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Abstract. The aim of this study was to develop an automated, simple and flexible procedure for updating 
raster-based forestry database. Four modules compose the procedure: (1) location of changed sites, (2) 
quantification of changed area, (3) identification of the new land cover, and (4) database updating. Firstly, a 
difference image is decomposed with wavelet transforms in order to extract changed sites. Secondly, 
segmentation is performed on the difference image. Thirdly, each changed pixel or each segmented region is 
assigned to the land cover class with the highest probability of membership. Then, the output is used to update 
the GIS layer where changes took place. This procedure was less sensitive to geometric and radiometric 
misregistration, and less dependent on ground truth when compared with post classification comparison and 
direct multidate classification. 
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1. Introduction 

Remote sensing and GIS are being increasingly used in combination. GIS databases are 
used to improve the extraction of relevant information from remote sensing imagery, 
whereas remote sensing data provide periodic pictures of geometric and thematic 
characteristics of terrain objects, improving our ability to detect changes and update GIS 
databases (Janssen, 1993). Most research efforts for monitoring land cover change with 
remote sensing have dealt with localised case studies of an experimental nature (Wyatt, 
2000). Considering monitoring of forests, the PRODES project (Estimate of Amazon gross 
deforestation) from the Brazilian Institute for Space Research (INPE) is one of the few 
examples of operational application of high spatial resolution remote sensing data for 
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change analysis over large geographical areas. It has been providing valuable estimates of 
deforestation since 1974. Until 2003, the methodology used by PRODES relied on manual 
delineation of deforested areas involving for each assessment approximately 50,000 man-
hours with a team of 70 remote sensing specialists supervised by 15 researchers (INPE, 
2000). Such a framework would be inapplicable for complex fragmented landscapes, as in 
the case study presented in this paper, unless automation of some tasks is achieved. The 
Landsat Pathfinder project (deforestation in the humid tropics) is another relevant attempt 
to monitor land cover at large scales with high spatial resolution imagery, which gave 
strong evidence for the need of automated approaches as well (Townshend, 1997). 

The aim of this study was to develop an automated, simple and flexible procedure for 
updating raster-based forestry databases.  

2 Materials and methods 

The procedure uses as input two remotely sensed images acquired at different points in 
time, GIS layers representing the land cover types under investigation, and a set of ground-
truth data for the present land cover pattern and for changed sites. The most recent image is 
used to update the GIS layers based on radiometric differences with the oldest image. This 
latter should have been acquired near the map production date to give a representative 
picture of the land cover pattern by that time. 

Feature extraction is performed with the aid of multiresolution wavelet analysis and the 
so-called multiscale products (Sadler and Swami, 1999; Carvalho et al., 2001), where 
maxima points are extracted at changed sites. Multiscale products are calculated using only 
intermediate wavelet scales to filter out spurious effects of misregistration and to reduce the 
search space (Carvalho et al., 2001). Maxima points are located in the filtered multiscale 
product if the value of a pixel is greater than its eight immediate neighbours. In this study, 
the difference image was produced by subtracting images of different dates. 

Segmentation of changed areas is performed with a simple region-growing algorithm, 
where neighbouring pixels of the detected maxima were sequentially evaluated by a 
decision rule until no more neighbours of the grown region meet the defined criterion. The 
decision threshold used was empirically extracted from groundtruth as 1.5 standard 
deviations from the mean value of the difference image. For example, if some neighbours 
of the pixel under consideration are greater than a threshold, they are stored sequentially in 
a temporary array. The first one is now turned into the pixel under consideration and its 
neighbours, greater than the threshold, are stored at the end of the same temporary array. 
This process iterates until the pixel under consideration has no neighbours greater than the 
threshold. Then, the next pixel in the temporary array is considered. The segmentation stops 
when the end of the temporary array is reached. Alternatively, the module may use adaptive 
thresholding with parametric or non-parametric rules applied to the spatial context 
surrounding each seed pixel (i.e., detected maximum) in single band or multispectral 
difference images. 

The classification of changed areas may be performed according to any desired 
decision rule (e.g., maximum likelihood, minimum distance, neural networks, decision trees 
etc) or even by an unsupervised procedure. If classification is unsupervised, the output 
clusters will have no label. In the supervised case, groundtruth for land cover classes of the 
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most recent image must exist with which to compare the segmented areas. The comparison 
might be performed pixel-by-pixel or assuming homogeneity within the segmented regions. 
In the first case, each pixel is assigned to the class that has the largest probability of 
membership. The second case can be viewed as an object-oriented approach, where each 
segmented area is considered a single object, which is assigned to the class that has the 
largest probability of membership. The output of this module is a thematic change layer 
where pixels that did not change are zero-valued. For this study a supervised scheme with 
maximum likelihood decision rules was used in a pixel-by-pixel base. 

Updating is straightforward with two simple conditional statements. (1) If a given 
location (i.e., pixel) in the change layer and in the GIS input layer are different from zero, 
then the land cover at this position has changed and the corresponding pixel in the GIS 
layer is assigned a value of zero. (2) If the changed pixel belongs to the land cover class 
represented by the input GIS layer, then a value of one is assigned to that location in the 
GIS layer under consideration. In this way, an updated binary mask representing the new 
land cover configuration is generated for each input GIS layer. 

Two other methods for change detection and identification were applied in this study: 
post classification comparison and direct multidate classification using artificial neural 
networks. The post classification comparison was chosen because it is the most popular in 
an operational context and a standard reference in change detection studies, whereas the 
neural network approach was chosen because it has been regarded as a promising tool for 
various automated tasks concerning geoinformation processing. 

The post classification approach consists of comparing the properly coded results of 
two separate classifications. Normally, the map from time t1 is compared with the map 
produced at time t2, and a complete matrix of categorical changes is obtained.  

Neural network based change detection follows the same principles of traditional image 
classification, but includes the land cover classes of both times. The direct multidate 
classification procedure proposed and described in Dai and Khorran (1999) for change 
detection was implemented in the present study. The authors used the MLP neural network 
model to classify a single data set composed by 12 Landsat TM bands, six from time t1 and 
six from time t2. Slightly different from the procedure used by Dai and Khorran (1999), our 
architectural settings were defined as follows: a four-layer fully interconnected network 
with back-propagation learning algorithm was used. The network had six nodes in the input 
layer because only three image bands were available for each date. The output layer had 
one node for each of the 16 change classes (i.e., direct output encoding) and the two 
intermediate (hidden) layers had 6 nodes each. The selected activation method was the 
sigmoid function with a fixed learning rate set to 0.001 and learning momentum set to 
0.00005. 

The case study comprised subsets of 187 x 250 pixels of co-registered Landsat TM 
images (path 218, row 75) from October 1984 and August 1999 (Figure 1), for which 
detailed ground truth was available. Two raster layers from a GIS database concerning 
semi-natural areas of forest and rocky-fields were used as the subjects to be updated 
(Figure 2). Note that illumination and phenological conditions are distinct within the 
imagery set. The image from 1999 has more relief shadows and the overall reflectance of 
vegetated areas in 1984 is notably higher. Yet, no attempt was made to correct these 
differences, as the proposed method is less sensitive to them (Carvalho et al., 2001). It is 
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important to mention that the proposed method is also considered to be less dependent on 
accurate image registration (Carvalho et al., 2001). Thus, only five ground control points 
(GCPs) were used to register a large image of 6500 x 4000 pixels, which was subset 
afterwards for this study. The root mean square error was 0.64 pixel, but visually evaluated 
displacements ranged from one to three pixels. TM band 3 was input to the search and 
segmentation modules whereas bands 3, 4 and 5 to the classification module.  

 
Figure 1. Images used in this study. 
 

 
Figure 2. GIS database to be updated. 

 
Ancillary data comprised a complete orthophoto mosaic (1:10,000) from 1984, small-

format aerial photos, and GPS measurements on the ground acquired during field 
campaigns in 1999. Orthophotos were used during field surveys to locate ground-truth 
samples. Thirty sample pixels of forest, rocky-field, grass land and rock exploitation sites 
were used to train the classifiers. In the neural network approach, training samples included 
all possible combinations of changes, whereas the other two approaches required only 
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samples representing the four land cover classes occurring in the area. For accuracy 
assessment, deforestation and new rock exploitation sites were identified within a random 
set of 200 forest pixels and 200 rocky-field pixels. The change maps obtained with the 
proposed procedure, post-classification comparison, and neural networks were organised in 
contingency tables from which standard per pixel error estimates were extracted. 

3. Results and discussion 

Figure 3 (a) and (b) illustrate the local maxima (arrows) found in the multiscale product 
image. They correspond to sites where land cover has changed in the GIS layers under 
consideration. The multiscale product image presented in Figure 3(a) and (b) is almost flat 
everywhere except for changed sites facilitating their automatic location. The detected 
maxima are then located in the data set that will be subject to the region growing algorithm, 
which, in the this case, corresponds to a single band difference image (Figure 3c). The 
regions segmented with the region growing algorithm are illustrated in Figure 3 (d). Pixels 
surrounding the detected maxima were considered to have changed and included in the 
region if they exceeded the threshold value. The threshold value was empirically 
determined because enough groundtruth data were available. Yet, this threshold might be 
automatically defined by considering the standard deviation of immediate neighbours of all 
detected maxima and by applying statistical significance tests. Finally, Figure 3 (e) shows 
the segmented regions classified on a pixel-by-pixel basis. These results were then used to 
update the GIS layer representing forest areas. 

 
Figure 3. Sequence of the results produced by the first three modules of the procedure proposed in this work. 
Identification of maxima points (a and b), output from search module (c), output from segmentation module 
(d), and output from classification module (e). 

 
Tables 1, 2, and 3 show the calculated change detection accuracy for the method 

proposed in this paper, the neural network-based change detection, and for the classification 
comparison method, respectively. Although not significantly different (z = 0.1992) (Cohen, 
1960), artificial neural networks performed slightly better than our approach. On the other 
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hand, post classification comparison results were far worse than the other approaches, 
confirming the expected error propagation of separate classifications. 
 
Table 1. Confusion matrix of the results produced by the method proposed in this work. 

 Ground truth (pixels) 

 
Mapped class 

Rock exploitation  
Grass 

Rocky 
field 

 
Forest 

 
Totals 

Rock exploitation 14 0 0 0 14 
Grass 1 21 0 3 25 
Rocky field 4 1 181 1 187 
Forest 0 4 0 170 174 
Totals 19 26 181 174 400 

Overall Accuracy = 96.5% (386/400)                  Kappa Coefficient = 0.9410 
 
Table 2. Confusion matrix of the results produced by the neural network-based change detection. 

 Ground truth (pixels) 

 
Mapped class 

Rock exploitation  
Grass 

Rocky 
field 

 
Forest 

 
Totals 

Rock exploitation 15 0 0 0 15 
Grass 0 21 0 3 25 
Rocky field 4 0 181 1 186 
Forest 0 5 0 170 175 
Totals 19 26 181 174 400 

Overall Accuracy = 96.75% (387/400)            Kappa Coefficient = 0.9452 
 
Table 3. Confusion matrix of the results produced by the post classification comparison method. 

 Ground truth (pixels) 

 
Mapped class 

Rock exploitation  
Grass 

Rocky 
field 

 
Forest 

 
Totals 

Rock exploitation 15 0 1 1 17 
Grass 0 21 16 7 44 
Rocky field 4 2 142 8 156 
Forest 0 3 22 158 183 
Totals 19 26 181 174 400 

Overall Accuracy = 84.0% (336/400)            Kappa Coefficient = 0.7400 
 

Field surveys revealed that changed patches were converted to only one new cover 
type. Forest areas were replaced by grassland and rocky-field areas by rock exploitation. 
Thus, the results provided by our approach might be further improved if an object-oriented 
approach is used. Each segmented region would then be treated as a single entity and 
assigned to a unique class. This would reduce the problem of speckled misclassification, 
which was not well represented in the test samples but visually detected as a considerable 
problem in changes from rocky-field to rock exploitation areas, mainly at the edges of the 
segmented objects. On the other hand, classification of deforested areas was well described 
by the confusion matrix, since visual evaluation showed just a few misclassifications.  

Figure 4 shows the change maps produced by each method evaluated in this study to 
update the GIS layer representing forest cover. Note the strong effect of geometric 
misregistration represented by many small and linear change patterns depicted with post 
classification comparison (Figure 4c) and the neural network-based change detection 
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(Figure 4b). The method proposed here (Figure 4a) was more effective in depicting 
important changes. 
 

 
Figure 4. Change maps produced with our compound procedure (a), with artificial neural networks (b), and 
with post classification comparison (c). 
 

The techniques currently available for detecting changes on remotely sensed data are 
dependent on accurate radiometric and geometric rectification (Dai and Khorram, 1998, 
Schott et al., 1988), which are difficult tasks in most situations (e.g. poor quality of old 
sensors). The method proposed here detected changes using TM band 3, which is the one 
most influenced by atmospheric effects within the available set (i.e., bands 3, 4 and 5). 
Temporal images were acquired in different seasons of the year and were considerably 
misregistered. Even so, the procedure performed well and was insensitive to these 
problems. The methodology developed in an earlier work (Carvalho et al., 2001) and 
incorporated in the present procedure enabled the automation of change detection with 
remotely sensed data by taking advantage of singularity detection and denoising 
capabilities of wavelet transforms. These capabilities have already proven to be useful in 
the field of remote sensing to automate other tasks like GCPs definition for geometric 
registration (Djamdji et al., 1993) and extraction of linear features (Ji 1996). Furthermore, 
the wavelet approach eases change detection in images with different pixel sizes in a 
straightforward manner because of its multiresolution nature (Carvalho et al., 2001). 
Remotely sensed images are relatively noisy signals, which provide lots of information at 
different spatial scales. In this sense, the procedure presented in this paper provides 
considerable improvements over post classification comparison and direct multidate 
classification (Figure 4), even considering that the latter provided a slightly better 
classification accuracy (compare Tables 1 and 2).  

The possibility of using different decision rules in the segmentation and labelling 
modules is an important characteristic of the procedure to meet specific requirements in 
different situations. For instance, when classes under investigation are accurately modelled 
by unimodal probability distributions, a maximum likelihood decision rule would be well 
suited. Unfortunately, this is not always the case and the possibility of using other non-
parametric rules is acknowledged. Finally, the procedure is especially attractive for 
monitoring large areas, where detailed inspection of difference images is prohibitive. 
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4 Conclusions 
In this paper, a framework for digital change detection and automatic GIS updating has 
been developed, demonstrated, and compared with other commonly used methods. The 
approach is relatively simple and provides advantages over traditional methods like post 
classification comparisons and direct multidate classifications. Firstly, the method is less 
sensitive to geometric and radiometric misregistrations because of the multiresolution 
approach to feature extraction included in the search module. Secondly, different from post 
classification comparisons, it requires groundtruth data only for the present land cover 
pattern. In comparison to direct multidate classification, change-classes do not need to be 
defined or training samples to be collected at changed sites. Finally, an object-oriented 
approach might be used, avoiding speckled misclassifications, which could improve 
classification accuracy. Further refinements of the procedure include the automatic 
threshold definition and the possibility of working with multivariate difference images. 
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