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Abstract. Empirical models designed to simulate and predict urban land use change are generally based on the 
utilisation of statistical techniques to reckon the land use change probabilities. In contrast to these methods, 
artificial neural networks arise as an alternative to assess such probabilities by means of non-parametric 
approaches. This work introduces a simulation experiment on urban land use change in which a supervised back-
propagation neural network has been employed in the parameterisation of the simulation model. The thereof 
estimated spatial land use transition probabilities feed a cellular automaton (CA) simulation model, based on 
stochastic transition rules. The model has been tested in a medium-sized town in the midwest of São Paulo State, 
Piracicaba. A series of simulation outputs for the case study town in the period 1985-1999 were produced, and 
statistical validation tests were then conducted for the best results, upon basis of a multiple resolution fitting 
procedure. 
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1. Introduction 
The concept of cellular automata arose in the very beginnings of the digital computation era, 
around the 1920s and 1930s, when two mathematicians - Alan Turing and John von Neumann 
- pursued the idea that machines would be self-reproducible, i.e. they would be able to 
generate an infinity of diverse patterns that could be indefinitely perpetuated (Batty et al., 
1997).  

Cellular automata (CA) models consist of a simulation environment represented by a 
gridded space (raster), in which a set of transition rules determine the attribute of each given 
cell taking into account the attributes of cells in its vicinities. These models have been very 
successful in view of their operationality, simplicity and ability to embody both logics- and 
mathematics-based transition rules. It is thus evident that even in the simplest CA, complex 
global patterns can emerge directly from the application of local rules, and it is precisely this 
property of emergent complexity that makes CA so fascinating and their usage so appealing. 

The usage of CA extend over a wide realm of scientific fields, including 
thermodynamics, deforestation processes, epidemics spread, behavioral biology, hydrology, 
oceanography, climatology, traffic engineering and control, amongst others.  

Cellular automata models faced an extensive application in the field of urban studies, 
particularly since the end of the 1980s, impelled by the parallel development in computer 
graphics and in theoretical branches of the complexity sciences. The 1990s experienced 
successive improvements in urban CA models, which started to incorporate environmental, 
socioeconomic and political dimensions, and were finally able to articulate analyses factors of 
spatial micro and macroscale (White and Engelen, 1997).  
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Urban CA models may regard both theoretical and practical applications, where the 

formers concern abstract exercises, and the latter ones, experiments dealing with real case 
studies. There are now some twenty or more applications of CA to cities, including a vast 
repertoire at both thematic and methodologic levels. 

The first CA models applied to urban studies were commonly based on very simple 
methodological procedures, such as the usage of neighborhood coherence constraints or 
Boolean rules (Couclelis, 1985) for the transition functions. These functions have been further 
improved by the incorporation of dynamic transition rules (Deadman et al., 1993), heuristics 
and fuzzy sets theory (Wu, 1996) as well as multicriteria evaluation techniques (Wu and 
Webster, 1998). 

Theoretical progresses in the fields of complex systems have been also added to cellular 
automata through the seminal work of Wolfram (1984) and these themes became recurrent 
within the CA scientific community (Portugali et al., 1999). Top-edge advances in the broader 
discipline of artificial intelligence, such as expert systems, artificial neural networks and 
evolutionary computation, have been lately included in the scope of CA simulations (Papini et 
al., 1998). 

Works associating artificial neural networks (ANN) to CA models for urban analysis are 
quite few. Li and Yeh (2001) conducted a simulation of land use change for a cluster of cities 
in southern China, using ANN embedded in a CA model upon a binary state basis (urban/non 
urban use). They further refined this model dealing with multiple regional land uses (Li and 
Yeh, 2002) and simulations for alternative development scenarios (Yeh and Li, 2003), but 
their investigations did not ever scale down at the intra-urban level. 

This paper is concerned with the simulation of multiple intra-urban land uses (e.g. 
residential, commercial, industrial, etc.) by means of ANN-based CA modelling. The 
following section approaches the study area and pre-processing techniques. The third section 
introduces the intervening factors in urban land use change. In the forth section, a theoretical 
overview on artificial neural networks is provided. Section five discusses questions related to 
model implementation and explains how it is conceived for determining transition 
probabilities governing changes in land use as functions of a variety of socio-economic and 
infrastructural factors. In section six, the simulation results are presented and explained in the 
context of urban land use dynamics. Finally, section seven is reserved for final comments and 
directions for future work. 

2. The Study Area 

This simulation model is developed for the city of Piracicaba, located in the midwest of São 
Paulo State, which in 2000 had a population of 319,104 people. The period for which the 
model is fitted is from 1985 to 1999, when the population grew from 198,407 to 309,531 
inhabitants. 

The city maps provided by the Piracicaba local authorities presented inconsistencies due 
to the fact that illegal settlements are not shown on the official maps, and not all of the legally 
approved settlements drawn have been in fact implemented. Moreover, some urban zones 
refer to areas which are not yet occupied, and some other zones categories do not correspond 
to the prevailing use indeed encountered within their limits, reflecting just the local officials´ 
intention for their future use. In this way, satellite imagery arise as a feasible solution for the 
identification of urban settlements actually existent, as well as for the delineation of the true 
urban occupation boundaries of the case study town. 

In this way, the initial (1985) and final (1999) land use maps were subjected to a 
reclassification of zones according to their dominant effective use; residential zones of 
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different densities were all reclassified to simply residential, and special use and social 
infrastructure were reclassified to institutional. Eight land use zone categories were adopted. 
Districts segregated from the main urban agglomeration by more than 10 km were judged 
outside the simulation area, and the traffic network was not considered to be at a fine enough 
scale to be represented as a land use. 

The land use maps for the two time slices are shown in Figure 1 (a) and (b). The changes 
between 1985 and 1999 are shown in Figure 2 (a) with the most significant land use change – 
from non-urban to residential use – shown in Figure 2 (b). All data used in this experiment 
were represented at 50 m x 50 m grid square, pre-processed using the SPRING GIS (from the 
Division for Image Processing of the Brazilian National Institute for Space Research – DPI-
INPE) and IDRISI (from Clark University). 

 
 
 

 
 
 
 
 
 
                                                                            

                                                                                   a)a)                                                                       b) 
 
Figure 1. (a) Land use in Piracicaba in 1985 and (b) Land use in Piracicaba in 1999. Residential use is yellow, 
commercial use is orange, water streams are light blue, institutional use is dark blue, industrial use is purple, 
services corridors are red, leisure/recreation is green, and non-urban use is white. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                                      a) 
 
 
  

 
 
 
 
Figure 2. (a) Land use change from 1985 to 1999 (top left) and (b) Map of land use transition for the case “non-
urban to residential use” during the period 1985-1999 (bottom right). 

  a) 

  b)
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3. Variables Governing Land Use Change 
From the map of land use changes from 1985 to 1999, shown in Figure 2 (a), obtained 
through a cross-tabulation operation between the initial and final land use maps shown in 
Figure 1, four types of transitions were observed and are listed in Table 1. 
 
Table 1 
Observed land use transitions 
 
Notation                    Land Use Transition 
 
NU_RES                   Non-Urban to Residential  
NU_IND                   Non-Urban to Industrial 
NU_INST                   Non-Urban to Institutional 
NU_LEIS                   Non-Urban to Leisure 
 
 

To explain each of the four existent land use transitions, eight variables were selected 
from an initial bunch of almost twenty variables regarding infrastructural and socio-economic 
aspects of Piracicaba. Examples of maps of independent variables are shown in Figures 3 (a), 
(b) and (c). 
 
 
 
 
 
 
 
 
                                                               a)                                               b)                                                c) 
 
 

Figure 3. (a) Distances to main paved and non-paved urban and interurban roads; (b) Distances to rivers and (c) 
Distances to residential zones. 
 

These variables refer to site attributes and they regard several types of proximity 
attractiveness (Wu and Webster, 1998). Empirical procedures were used for the pre-selection 
of variables, like the visualization of distinct variables superimposed on the final land use 
map, what aimed at sorting out the set of those ones more meaningful to explain the four 
different types of land use change. These spatial variables, previously pre-processed in 
SPRING, were used as inputs to the neural network for urban simulation. 

4. Artificial  Neural Networks (ANN) 
Artificial Neural Networks attempt to simulate human reasoning offering fault-tolerant 
solutions. They can be used either for pattern recognition or classification, and in many 
disciplines with a high degree of difficulty, they have been extensively and successfully 
applied. As stated by Fischer and Abrahart (2000), these mechanisms are able to learn from 
and make decisions based on incomplete, noisy and fuzzy information, and that is the reason 
why they can be easily suitable to handle spatial problems. Li and Yeh (2002, apud Openshaw 
and Openshaw, 1997, and Openshaw, 1998) identify a series of ANN advantages: 

(a) The structure of algorithms enables neural networks to be robust and noise 
resistant regardless of poor data. 

(b) They can solve highly nonlinear problems in complex systems. 
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(c) The method is rather simple because no exact questions or expressions are 
required.  

(d) The best level of performance can be obtained. 
(e) There are no restrictions about using nonnumeric data. 
(f) They adapt to nonnormal frequency distribution. 
(g) Mixtures of measurement types can be used. 
(h) They can use many variables, some of which may be redundant. 

 
       Neural networks consist of processing units, the so-called neurons or nodes, which are 
organized in a couple of layers. Commonly, a neural network has a threefold design: one input 
layer, one output layer and no or some hidden layers inbetween, whose nodes report to those 
of contiguous layers by means of connections designed to assess weights and signals. All the 
neurons, except those in the input layer, perform two simple processing functions – collecting 
the activation of the neurons in the previous layer and generating an activation as the input to 
the next layer. The neurons in the input layer only send signals to the next layer. 
     Very simple functions establish the interactions between neurons. If p equals a sender 
neuron in the input layer and q is a receiver neuron in the next layer, the collection function is 
given as 
 
                ,                                                      (1) 
 
 
where Ip is the signal from neuron p of the sender layer, netq is the collection signal for 
receiver neuron q in the next layer, and wpq is the parameter or weight to sum the signals from 
different input nodes. The receiver neuron creates activation in response to the signal netq. 
The activation will become the input for its next layer, and such activation is usually created 
in the form of a sigmoid function (Yeh and Li, 2003): 
 
                                                                                       .                                                          (2) 
            
 
 

The activation will be passed to the next layer as the input signal, and Equations (1) and (2) 
will be used to process the signal again. These routines remain until the final signals are 
obtained by the output layer. 
 Parameters (weights) are decisive to define the final signals. In this particular case, a 
back-propagation learning algorithm (Rumelhart et al., 1986) has been adopted. The 
algorithm involves an iterative procedure for minimization of an error function, in which the 
weights continuously undergo adjustments by means of comparison between the calculated 
and desired outputs, these latter extracted from a training data set. In this type of neural 
network, the weights are first initially set in a random way, and the errors, computed as the 
difference between calculated and desired activation for the output neuron, are propagated 
backwards through the network and used to refine the weights. In sum, this process of 
adjusting weights according to the errors will be repeated as many iterations as necessary in 
order to render the errors compatible with acceptable thresholds. 
 In a general way, the overall output error is defined as half the overall sum-of-the-squares 
of the output errors, which, for the kth training pattern, is 
 
 
  

n e t q  =  ∑ w p q Ip
p

       1
  1   +   n et q
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                                                                                                  ,                                               (3) 
 
 
where Okq  is the calculated network output, Dkq  is the desired output for neuron q, and m is 
the number of neurons in the output layer of the network.  
 The accumulated error for all training patterns is 
  
                                                                                         
                                                                                    ,                                                             (4) 
 
 

where l is the total number of training patterns.  
 The learning process enables the neural networks to make predictions as close as possible 
to the desired values for a set of training data. Once the network has been properly trained, it 
is finally ready for conducting the simulations. 

5. Model Implementation: Simulating Urban Land Use Change Using Neural 
Networks in a CA-Based Model 
Each of the four types of land use transition identified in the city of Piracicaba during the 
period 1985-1999 were treated as a separate neural network.  The platform used for training, 
simulation and validation of these four networks was the SNNS1 package. This approach of 
dealing with the transitions independently is in accordance with the CA-based model 
employed in this experiment – DINAMICA2 – which operates upon basis of transition 
probabilities maps for each type of land use change. 
 The architecture of the neural network should be conceived as simply as possible because 
the simulation contains many loops. In this study, the proposed neural networks have only 
three layers each – the input layer, a hidden layer and the output layer, as seen in Figure 4 (a). 
Difficult learning tasks can sometimes be simplified by increasing the number of hidden 
layers, but according to Gong (1996), a three-layer network can form any decision 
boundaries. Each variable is associated with a neuron in the input layer. As these variables 
refer to various types of proximities, the ranges of distances were scaled according to an 
increasing rank of values departing from 0.1 and spaced also by 0.1, i.e. 0.1, 0.2, 0.3, …, 0.7. 
It is more appropriate to convert input data into the range of [0,1], since this scaling procedure 
makes the input values compatible with the sigmoid activation function that produces a value 
between 0 and 1 (Gong, 1996).  
 
 
 
 
 
 
 
 
                                                                                          a)                                                                                    b) 

 
Figure 4. (a) Generic example of an artificial neural network structure with only a single output neuron (left) and  
(b)  Example of a prediction error graphic, estimated for the transition “non-urban to institutional use” (right). 
                                                 
1 SNNS (Stuttgart Neural Network Simulator) is a trademark of the Institute for Parallel and Distributed High Performance Systems of the 
University of Stuttgart (IPVR), Germany. 
2 DINAMICA is a trademark of the Centre for Remote Sensing of the Federal University of Minas Gerais (CSR-UFMG), Brazil. 
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 The output layer, on its turn, has only one neuron that corresponds to the map of 
transition probabilities for the considered type of land use change. In the training data set, the 
desired (target) value in the output layer is recorded as 1 for a cell that underwent a change in 
its land use, and 0 for a cell that suffered no change. In the extraction of the training data set 
for each network, large rectangles were delimited within the study area containing 
representative samples of the existent ranges of distances (for the maps of variables) and of 
land use permanence and change (in the case of the maps of land use transition). 
 Diverging approaches rule the definition of the number of neurons in the hidden layer. 
According to Kolmogorov´s theorem (Yeh and Li, 2003), if n is the number of neurons in the 
input layer, the use of 2n + 1 neurons can guarantee the perfect fit of any continuous 
functions, and reducing the number of neurons may lead to lesser accuracy. On the other 
hand, Wang states that 2n/3 hidden neurons can produce results of almost similar accuracy but 
requires much less time to train (Wang, 1994 apud Yeh and Li, 2003). In all the four networks 
of this study, Kolmogorov´s premises have been observed, and the prediction error decreased 
considerably during the training, as shown in Figure 4 (b). With the cells transition 
probabilities being defined by the ANN outputs, global transition probabilities were reckoned 
through a cross-tabulation operation between the initial and final land use maps shown in 
Figure 1. These probabilities are 0.1501 for the transition “nu_res”, 0.0113 for “nu_ind”, 
0.0028 for “nu_inst”, and 0.0005 for the transition “nu_leis”. 

6. Results and Discussion 
Maps of transition probabilities were generated for the four types of land use change, where 
the learning parameter (η) was set to 0.2, the maximum distance to the error (dmax) was 
adjusted to 0.1, and the iteration cycles ranged from 800 to 1,000. Upon basis of the pruning 
algorithm, sets of variables have been selected to explain the land use transitions (Table 2). 
 
Table 2 
Selection of variables determining land use change 
 
Independent Variables (Notation)                                       NU_RES            NU_IND            NU_INST            NU_LEIS 
 
Distances to rivers (dist_riv)                                                                                                                           ♦ 
Distances to commercial zones (dist_com)                 ♦ 
Distances to small-sized industrial zones (dist_ind)                                                       ♦ 
Distances to institutional zones (dist_inst)                                                                                        ♦ 
Distances to residential zones (dist_res)                       ♦                              ♦                                                               ♦ 
Distances to leisure/recreation zones (dist_leis)                                                                                                                          ♦       
Distances to main interurban roads (int_rds)                                                                                               ♦                            ♦    
Distances to main paved and non-paved urban and interurban roads (main_rds) ♦       
 
 

The transition probabilities maps served as inputs to the CA simulation model – DINAMICA 
– which produced the land use change simulations, seen in Figures 5 (a), (b), (c) and (d). 
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The land use change simulations were accomplished by two types of stochastic transition 
algorithms – “expander” and “patcher” – which operate changes through expansion and 
diffusion, respectively. These simulations were validated according to a multiple resolution 
fitting method (Constanza, 1989), and the values obtained for windows 3x3, 5x5 and 9x9 
were 0.862682, 0.864872, and 0.864644, respectively for S1, S2, and S3. It is observable that 
the land use transitions comply with economic theories of urban growth and change, which 
maximize consumers´ and markets´ utilities in terms of real state prices and accessibility. 

7. Conclusions  
Cities are open and non-linear complex systems. ANN though proved to have the capability to  
model non-linear features and handle well the uncertainties of spatial data. ANN have two 
main disadvantages: they are black-box devises and the user´s intervention is still decisive for 
the results quality. Further studies are needed to assess the responsiveness of the simulation 
outputs in face of changes in the type, structure and internal parameters of the network. 
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Figure 5. (a) Real land use in Piracicaba - 1999; (b) Land use simulation 1 – 1999; (c) Land use simulation 2 –

a) 

1999; and (d) Land use simulation 3 - 1999. 
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