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Abstract. The main purpose of this work is to assess the potential of multitemporal images from the 1-km 
SPOT-4 VEGETATION (VGT) sensor to obtain a land cover map of the Brazilian Legal Amazon (BLA) for the 
year 2000, discriminating primary tropical forest, cerrado savanna, agriculture/pasture, natural/artificial 
waterbodies, and secondary succession forest, using a probability-bagging classification tree (PBCT). The 10-
fold cross validation procedure yielded an overall sample accuracy of 0.92. Besides, this algorithm allowed us to 
build a class membership probability map, with ~80% of the pixels with class membership probability greater or 
equal than 0.8. The estimated total area of agriculture/pasture and secondary succession forest in the BLA was 
877,435 km2 and 57,636 km2, respectively. Comparison with an existing land cover map indicates that 
agriculture/pasture occurred primarily in areas previously occupied by primary tropical forest (45.8%) and 
cerrado savanna (32.7%). 
 
 
Palavras-chave: Brazilian Legal Amazon (BLA), land use/land cover change, SPOT-4 VEGETATION (VGT), 
machine learning, Amazónia Legal Brasileira, alterações de ocupação do solo, aprendizagem automática. 

1. Introdução 

In the Amazon Basin, the major tropical forest ecosystem in the world, there is growing 
concern with deforestation and its influence on the carbon cycle (Skole and Tucker, 1993; 
Achard et al., 2002). Identification of areas undergoing forest regeneration is also important, 
as these play an important role as carbon sink (Brown and Lugo, 1990). Due to the extent of 
the Brazilian Legal Amazon (BLA), as well as restricted accessibility throughout most of the 
area, remote sensing data have an important role in characterizing land use/land cover change.  

The Brazilian Institute for Space Research (Instituto Nacional de Pesquisas Espaciais – 
INPE) has reported that BLA deforestation in areas of primary tropical forest reached a value 
of 587,727 km2 by the end of 2000, including 97,000 km2 of old deforestation (prior to 1960) 
in Pará and Maranhão (INPE, 2002). Native vegetation clearing in regions dominated by 
cerrado savanna is not well documented, mainly because spectral differences between natural 
vegetation and agricultural crops are more subtle than those observed when primary tropical 
forest is converted to agriculture (Nepstad et al., 1997). Nonetheless, there is evidence from 
integrated satellite and census data that extensive native vegetation clearing has occurred in 
regions of cerrado savanna between the early 1980s and the mid 1990s (Cardille and Foley, 
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2003). Also, several studies have shown that secondary succession forest establishes rapidly 
in abandoned areas (Uhl, 1987; Brown and Lugo, 1990), mainly because the cost of re-
clearance is extremely high for most farmers (Moran et al., 1994). 

The main objective of this work was to evaluate the capability of a time series of monthly 
composite images of the 1-km SPOT-4 VEGETATION (VGT) sensor for the year 2000, to 
produce a land cover map of the BLA. We were interested in discriminating primary tropical 
forest, cerrado savanna, agriculture/pasture, natural/artificial waterbodies, and secondary 
succession forest, using probability-bagging classification trees (PBCT). A special emphasis 
was placed on agriculture/pasture and secondary succession forest classes, due to their 
influence in the carbon cycle. An important contribution of this work was to map 
agriculture/pasture in areas previously occupied by primary tropical forest and cerrado 
savanna. The dataset used in this study has the potential for detecting deforested areas 
occurring in cerrado savanna regions, as phenological differences may be more evident on a 
seasonal basis. Accuracy assessment of the resulting land cover map was performed 
quantitatively, with an error matrix and with a derived map of class membership probability. 

2. Study area 
The BLA is a politically defined region of Brazil and encompasses the states of Acre, Amapá, 
Amazonas, Mato Grosso, Pará, Rondônia, Roraima, Tocantins, and a part of Maranhão (west 
of 44º W). Most of the BLA is included in the Amazon river basin, with the exception of 
southern Mato Grosso and western Maranhão, included in the Paraguai and Parnaíba river 
basins, respectively. This region covers an area of approximately 5,000,000 km2, consisting 
primarily of closed tropical forest, but also including large areas of flooded forest and cerrado 
savanna (Goulding et al., 2003). 

3. Data 
The original dataset used in this study was a set of daily 1-km SPOT-4 VGT images spanning 
the entire year 2000, and covering the BLA (3360x2800 pixels). The dataset over the BLA 
reached only to 45º W, thus missing the portion of the state of Maranhão between 44º and 45º 
W. We used the S1 product, consisting of 1-km georeferenced, calibrated, atmospherically 
corrected surface reflectance data (Passot, 2000). The high temporal resolution and the low 
cost of SPOT VGT data renders them appropriate for land use/land cover change monitoring 
at regional to global scales. We have further combined SPOT-4 VGT S1 daily images into 12-
monthly composite images from January to December 2000. The compositing algorithm is 
described in Carreiras and Pereira (2004). Training and testing data were collected over the 
study area using high-resolution remote sensing imagery as ancillary data. A set of 19 Landsat 
5 TM and Landsat 7 Enhanced TM Plus (ETM+) scenes from the years 2000 and 2001 were 
used. Areas of secondary succession forest were selected using two dates per scene. Landsat 5 
TM and 7 ETM+ were obtained from INPE, in the scope of the Prodes Digital Project, and 
from the Global Land Cover Facility (GLCF), University of Maryland (USA). 

The location and distribution of agriculture/pasture and secondary succession forest was 
assessed by comparison with an existing 59-class vegetation map of the BLA, prepared by the 
Instituto Brasileiro de Geografia e Estatística (IBGE) - Mapa de Vegetação do Brasil (IBGE, 
1988). Those 59 classes were further aggregated into four major classes: primary tropical 
forest, cerrado savanna, transition forest, and other vegetation types. 
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4. Methods 

4.1. Image classification 
Our main focus was on the correct evaluation of the spatial distribution of agriculture/pasture 
and secondary succession forest. However, we also mapped areas of primary tropical forest, 
cerrado savanna, and natural/artificial waterbodies. Areas that were deforested and currently 
support agriculture or pasture were easily identified in Landsat TM/ETM+ data, due to their 
spectral characteristics and regular field geometry. Areas of forest regeneration were 
identified based on two dates of Landsat TM/ETM+ data; an area was considered to support 
secondary succession forest if in the first date it had been subjected to deforestation, and in 
2000/2001 it no longer supported agriculture or pasture. Each training sample polygon 
extracted from the VGT imagery comprises a maximum of four pixels. 

Classification trees are a non-parametric method. A classification tree partitions the space 
of all possible spectral signatures x, starting with the whole spectral space (the root of the tree) 
and successively splitting that space in subsets, such that each subset is more likely to be 
assigned to one of the land cover classes than the subset from which it is split (Breiman et al., 
1984). All subsets of the spectral space are represented by nodes in a tree, and each split 
corresponding to the descendents of a node. Since each node of the tree represents an element 
Pj of a partition of the space of all possible x, one can estimate P(classi/x∈ Pj) for all terminal 
nodes and all classes, and assign the node to the class with the highest probability. The 
estimate of P(classi/x∈ Pj) is simply the proportion of pixels that belong to classi among all 
the training sample pixels that are in Pj. In the Classification and Regression Trees (CART) 
algorithm of Breiman et al. (1984) heuristic techniques are used to find a tree structure that 
discriminates the classes (i.e. which terminal nodes have a high proportion of sample 
individuals of some class) but is not overfitted to the training sample (i.e. the tree should not 
be “too large”). 

Classification trees are sensitive to small perturbations in the training set, which may 
originate large changes in the resulting classifiers (Breiman, 1996). Therefore, these unstable 
methods can have their accuracy improved with a perturbing and combining technique, that is, 
by generating multiple perturbed versions of the classifier (a.k.a. ensemble, or committee) and 
combining those into a single predictor (Breiman, 1998). These methods can be divided in 
two types: those that adaptively change the distribution of the training set based on the 
performance of previous classifiers (e.g. boosting) and those that do not (e.g. bagging) (Bauer 
and Kohavi, 1998). In this study we will only focus on the bagging algorithm applied to 
CART. In bagging, each sub-classifier ci (i=1…n) is run on n different bi bootstrap samples of 
the original m training set observations. Each bi is generated by uniformly sampling m 
observations from the training set with replacement. The final classifier C is built from ci, 
whose output is the class most frequently predicted by its sub-classifiers, with ties broken 
arbitrarily (Breiman, 1996). Although the main purpose of bagging was to build a strong 
classifier by means of variance reduction (Breiman, 1996), some variants of bagging have 
also proven adequate for the estimation of class membership probability (Provost and 
Domingos, 2003). Probability-bagging classification trees (PBCT) is one of such variants, so 
that instead of returning a classification, each sub-classifier returns a probability distribution 
for the classes in each terminal node (Bauer and Kohavi, 1998; Provost and Domingos, 2003). 
Subsequently, the PBCT algorithm averages the probability for each class over all sub-
classifiers, and predicts the class with the highest probability. However, Provost and 
Domingos (2003) note that these probability estimators of class membership are not unbiased. 
Nevertheless, those estimates can be useful in land cover mapping, by assigning to each pixel 
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a relative degree of classification confidence. In this study we used 25 bootstrap replicates to 
build a PBCT, evaluated with a 10-fold cross validation approach. 

4.2. Accuracy assessment 
The error matrix of each classifier is used as an approximation for the accuracy of the land 
cover map. The difficulty in obtaining up-to-date independent information of spatial 
distribution of land cover classes in the BLA led us to choose a complementary approach. As 
mentioned before, the application of the PBCT algorithm can provide information of class 
membership probability. Therefore, application of this classifier to the entire BLA can 
provide a map of class membership probability, that is, in each pixel, the highest averaged 
probability over the sub-classifiers derived from the 25 replicates of the training samples. 

5. Results and discussion 

5.1. Image classification 
A total of 8386 pixels of known land cover, corresponding to 2264 sampling polygons, were 
identified in the Landsat TM/ETM+ imagery and overlaid on the SPOT-4 VGT monthly 
composites. The precision of the PBCT algorithm was evaluated using 10-fold cross 
validation, with the corresponding error matrix (Table 1). 
 
Table 1 – Confusion matrix for the PBCT algorithm, using the 10-fold cross validation approach. 

Predicted class (# pixels)  
Observed 
class (# pixels) (1) (2) (3) (4) (5) 

 
Total 

 
 

Omission 
error 

Primary tropical forest (1) 3457 60 37 0 24 3578 0.034 
Cerrado savanna(2) 94 692 99 1 0 886 0.219 
Agriculture/pasture (3) 70 98 3133 0 36 3337 0.061 
Natural/artificial waterbodies (4) 0 0 0 351 0 351 0.000 
Secondary succession forest (5) 97 4 54 0 79 234 0.662 
Total 3718 854 3323 352 139 8386  
Commission  
error 0.070 0.190 0.057 0.003 0.432   

 
The natural/artificial waterbodies, agriculture/pasture, and primary tropical forest classes, 

displayed commission and omission errors below 0.08. The cerrado savanna class had higher 
commission and omission errors, around 0.20. The secondary succession forest class was the 
most problematic, with highest commission (0.432) and omission (0.662) errors. The major 
confusion occurs between the secondary succession forest class and the primary tropical 
forest and agriculture/pasture classes. This is understandable, since from a spectral standpoint, 
secondary succession forest is a transitional class between agriculture/pasture and primary 
tropical forest. 

Application of the PBCT classifier to the entire dataset resulted in a land cover map of the 
BLA for the year 2000 (Figure 1). The class represented in each pixel is that with the highest 
probability, averaged over the 25 sub-classifiers. The area and proportion of each land cover 
class per state is presented in Table 2. The state of Maranhão had the highest proportion of 
agriculture/pasture, with 60.0% (119,831 km2), followed by Mato Grosso with 35.4% 
(320,523 km2), and Tocantins with 34.3% (95,661 km2). The states of Amazonas (1.2%), 
Amapá (8.6%), and Acre (10.4%), displayed a relatively low proportion of 
agriculture/pasture. Secondary succession forest was concentrated in Pará with 36,478 km2 
(2.9%), Maranhão with 11,286 km2 (5.7%), Amazonas with 3413 km2 (0.2%), and Mato 
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Grosso with 2961 km2 (0.3%). Deforestation started long ago in the states of Maranhão and 
Pará (Nepstad et al., 1997) and a part of this area appears to have been abandoned, allowing 
for the regrowth of secondary succession forest. 
 

 
Figure 1 – Land cover map of the BLA for the year 2000, derived from the PBCT algorithm. 
 
Table 2 – Distribution of land cover classes obtained from the PBCT algorithm, per state of the BLA, for the 
year 2000. Total/state land cover class percentage is indicated in parentheses. 

 Land cover classes [km2(%)] 
  

State Primary 
tropical forest 

Cerrado 
savanna 

Agriculture/ 
pasture 

Natural/artificial 
waterbodies 

Secondary 
succession 

forest 
Total 

Acre 141,593(89.2) 59(0.0) 16,440(10.4) 0(0.0) 681(0.4) 158,773 
Amapá 124,915(87.4) 2707(1.9) 12,314(8.6) 2502(1.8) 474(0.3) 142,911 
Amazonas 1,538,919(96.1) 12,205(0.8) 18,613(1.2) 28,879(1.8) 3413(0.2) 1,602,030 
Maranhão * 19,447(9.7) 48,336(24.2) 119,831(60.0) 717(0.4) 11,286(5.7) 199,617 
Mato Grosso 368,962(40.8) 208,367(23.0) 320,523(35.4) 4104(0.5) 2961(0.3) 904,917 
Pará 955,362(76.5) 24,440(2.0) 200,172(16.0) 32,996(2.6) 36,478(2.9) 1,249,449 
Rondônia 154,546(64.3) 16,627(6.9) 67,447(28.1) 754(0.3) 1008(0.4) 240,383 
Roraima 161,815(72.1) 31,124(13.9) 26,434(11.8) 3912(1.7) 1141(0.5) 224,425 
Tocantins 15,733(5.6) 166,251(59.7) 95,661(34.3) 802(0.3) 193(0.1) 278,640 
Total 3,481,292(69.6) 510,116(10.2) 877,435(17.5) 74,666(1.5) 57,636(1.2) 5,001,145 

  * the state of Maranhão is only included west of 45º W 
 

If the combined area mapped as agriculture/pasture and as secondary succession forest in 
2000 (935,071 km2) can be viewed as a proxy for the total deforested area in the BLA by 
2000, then this number is almost twice the cumulative deforestation value of 587,727 km2 
reported by INPE (2002) up to the year 2000. Discrepancies between this study and INPE’s 
estimate are more evident in those states where the proportion of cerrado savanna is higher 
(Tocantins, Maranhão, Mato Grosso, and Pará). Consequently, our results bring further 
evidence of large-scale deforestation in cerrado savanna. The estimated value of 57,636 km2 
for the overall extent of secondary succession forest in the BLA is significantly lower than 
those available in the literature, namely the 157,973 km2 from Lucas et al. (2000) for early 
1990s. These authors mapped forest regeneration with an unsupervised classification 
algorithm and NOAA AVHRR data, relying in ancillary information to label the resulting 
clusters. The fact that our study does not consider the part of Maranhão between 44º and 45º 
W could explain a fraction of that difference, as this state has one of the highest rates of forest 
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regeneration. Perhaps, most important is the fact that mitigation measures implemented by 
some state governments to abate deforestation of primary tropical forest and cerrado savanna 
(e.g. Fearnside, 2003) could result in the re-deforestation of secondary succession forest, thus 
reducing its extent. 

The incidence of agriculture/pasture and secondary succession forest was assessed by 
comparison with a 59-class vegetation map of Brazil (IBGE, 1988), which was condensed 
into four classes. This analysis indicates that in Amapá, Maranhão, Mato Grosso, Roraima, 
and Tocantins, establishment of agriculture/pasture in regions of cerrado savanna has been as 
significant as in areas of primary tropical forest. Our analysis indicates that only 45.8% 
(401,866 km2) of the areas in the BLA with agriculture/pasture in 2000 were established in 
areas previously occupied by primary tropical forest. A large amount of the area with 
agriculture/pasture in 2000 was located in regions formerly occupied by cerrado savanna 
(32.7%, 286,921 km2); the remaining was established in areas of transition between the 
previous classes (18.9%, 165,835 km2), and, to a much lesser extent, in other vegetation types 
(2.6%, 22,813 km2). The distribution of the areas of secondary succession forest in the BLA 
in 2000 indicates that the majority of this class occurred in areas previously occupied by 
primary tropical forest (87.8%, 50,604 km2); the exceptions are the states of Mato Grosso, 
Tocantins, and Amapá, where forest regeneration appears in areas originally covered by 
transition forest, cerrado savanna, and other vegetation types, respectively. This is not 
surprising, as farmers often abandon deforested areas due to intense vegetation regrowth in 
areas of primary tropical forest (Moran et al., 1994; Nepstad et al., 1997). 

Therefore, the abovementioned discrepancies between this study and the numbers of 
INPE (2002) are largely explained by the extent of agriculture/pasture established in areas of 
cerrado savanna, not considered in the analysis carried out by INPE. 

5.2. Accuracy assessment 
A map of class membership probability for the class with the highest probability was derived 
from the output of the PBCT algorithm (Figure 3). Used in combination with the land cover 
map of Figure 2, it gives useful information about the relative degree of membership of the 
most probable class. 
 

 
Figure 2 – Map of classes of class membership probability for the land cover map of the BLA obtained from the 
PBCT algorithm. The colour of each bar represents a given class of class membership probability, and the size is 
proportional to their extent in the map (ahead is the percentage of each class in the BLA). 
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It is evident that natural/artificial waterbodies and primary tropical forest have the highest 
degree of class membership, i.e. they are the classes mapped with the highest degree of 
confidence. Some areas associated with cerrado savanna and agriculture/pasture display 
lower class membership probability. The class with highest commission and omission errors, 
secondary succession forest, also has low class membership probability, meaning that 
allocation of a pixel to this class is done with a relatively low degree of confidence. The lower 
probability of class membership in the state of Roraima may be due to residual cloud 
contamination in the monthly composite images. These class membership probability 
estimates were compared with class-specific accuracy (i.e. commission error). The class-
specific mean membership probability is highly inversely correlated with classification errors, 
i.e. higher classification errors tend to have lower class membership probability. Also, the 
overall mean probability of class membership for the entire BLA was 0.90 (0.148 standard 
deviation), which is similar to the overall accuracy (0.92). Consequently, the estimates of 
class membership probability add supplementary information regarding map quality. 

6. Conclusions 
The PBCT algorithm performs well in most of the mapped land cover classes, with the 
exception of the secondary succession forest class, which has higher commission and 
omission errors. This class is extensively confused with primary tropical forest and 
agriculture/pasture. The higher amount of aggregated agriculture/pasture and secondary 
succession forest classes in 2000 obtained in this study (935,071 km2), when compared with 
deforestation estimates up to 2000 from INPE (2002) (587,727 km2) is mostly due to 
agriculture/pasture occurring in areas previously occupied by cerrado savanna. It appears that 
agriculture/pasture establishment in areas previously occupied by cerrado savanna was as 
important as in areas of primary tropical forest. The possibility of obtaining maps of class 
membership probability derived from PBCT further improved the characterization of the 
proposed 5-class land cover map. We have shown that higher class membership probability is 
associated with lower classification errors. This approach adds supplementary information for 
accuracy assessment of land cover maps. This study demonstrated the utility of the SPOT-4 
VGT sensor in predicting the extent of primary tropical forest, cerrado savanna, 
natural/artificial waterbodies, and agriculture/pasture in the BLA with a reasonable degree of 
accuracy. The land cover map produced may be useful for analysis of regional carbon and 
water fluxes, and for evaluating impacts of land use/land cover change on biotic diversity and 
soil degradation. 
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