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Abstratct. In this study accomplish several experiments with the filters optimized of weights, through different 
bases of the transformed wavelet. Our goal was to determine a filter that it introduces a good highlight in the 
images of the orbital optical sensors. They were used one image of the city of Campinas of the interior of the 
state of São Paulo in Brazil. The results were best when compared to the obtained with the ideal filter of good 
used contrast in this study.  
 
Keywords: multiscale analysis, filtering, Landsat, edge detection, contrast measure. 

1. Introduction 

1.1 Problem 
Multiscales analysis was used in this study for different terms borders scales contained in a 
same image and that is considered as an only border in the linear filtration. The linear 
filtration introduces good results in terms of contrast however is not so good to hand different 
scales.  

The enhanced or restored image g may be undesirable if noise in the original image f is 
amplified by H.  By Weber`s Law and the masking effect suggest the following nonlinear 
approach to image enhancement 

Let L denotes a linear filter that is tuned to a specific type of local image feature. By 
“local” we mean that the output image Lf at the point (x,y) depends only on the local 
neighborhood of about (x,y). By “tuned” we mean that ),( yxLf  is large if a local image 
feature, such as an edge or region of high intensity (high local mean), is near (x,y) in f. A 
weighted high pass filter is defined by the mapping 

 
                                  .1     ),,(),(),(),( ≥= pyxHfyxLfyxfHyxf p

Wα  
 
Here, pLf  is the image formed by raising every point ),( yxLf in the image Lf to the p-th 

power. The image pLf  “weights” the high pass filters image Hf point wise according to the 
strength of the local features associated with L. For instance, if L corresponds to a local mean, 
then fH w is roughly proportional the image obtained by applying H only in regions with high 
local mean. If L is a local edge-detector, then fH w is proportional to the output image 
obtained by applying H only in regions where an edge is detected Roberts (1997).  
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The notion of multiscale signal analysis is motivated by the need to detect and 
characterize the edges of small and large objects alike. In an image, different structures give 
rise to edges at varying scales-small correspond to fine detail and large scales correspond to 
gross structure. In order to detect all image edges, one must study the image at each scale. 
Multi-scale image processing tools include scale space, wavelet transforms. 

To analyze discrete images, we use an undecimated two channel filter bank with discrete 
analysis filters h and g and a range of scales J limited by the number of pixels in the image. In 
practice, the choice of J is problem-dependent, but prior information may suggest a 
reasonable choice depending on which types of features are dominant in the image under 
study Mallat (1992). 

2. Optimal Weighted High Pass Filters 
We can easily formulate the mean-weighted high pass filter in the multiscale framework by Hf 
in (1): 
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The exponent p controls the relative weighting in light and dark regions; increasing p 
tends to emphasize areas of peak intensity. The scale bound J limits the range of scales used 
for local feature detection. J acts as a regularization parameter: a small value of J gives 
maximum regularization by focusing the filters on only very local feature, while a large value 
allows the filters to incorporate more global, gross structure at the expense of less 
regularization. In practice, the choice of J is problem-dependent, but priori information may 
suggest a reasonable choice depending on which types of features are dominant in the image 
under study.  

3. Multiscale Edge-Weighted Filters  
 

We define the detail modulus as 
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Point wise multiplication of the high pass image Hf with p

fD j2 . The multiscale analysis 
produces a set of edge-weights high pass filters; each is tuned to edges at a prescribed scale: 
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Increasing the exponent p tends to localize the weighting to areas where the detail 

modulus has local maxima. 

4. Optimal Filter Design 

Multiscale analysis provides a suite of weighted high pass filters, (1) and (2), suitable for 
image enhancement. If we consider the collection of filtered versions of f 
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with arbitrary real coefficients { }pjpj ,, , βα . The collection fC  is quite general. The optimal 
weighted high pass filtered image fH opt is the projection of the linear high pass filtered image 
onto the subspace spanned by the set of weighted high pass filtered images. We can compute 
the optimal image by adjusting the filter parameters { }pjpj ,, , βα . Specifically, we have 

 
                2minarg FwCfHopt HffHfH

fw
−= ∈  

 
where we have chosen the Frobeniuns norm for computational convenience. 
The optimal filter optH  is unique and can be computed in a simple fashion. First let  
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where “vec” is the operator that forms a column vector from a matrix by its columns. Now 
define the matrix ],....,,....,[ ,1,1,1,1 PJpj ssddX = and the parameter vector 

T
pjpj ],.....,,.....,[ ,1,1,1,1 ββααγ = . The optimal weighted high pass image, in vectorized form, is 

given by 
 
                          optopt Xh γ=  
 

where, 
 
          .)(arg 12

22 hXXXhX TT
Ropt jp

−
∈ =−= γγ γ  

 
We briefly describe an adaptive filter that optimally adjusts its weighting coefficients at 

each point in image. Using these parameters, the output of the locally optimal weighted high 
pass filter at the point (x, y) and ),( yxB is a local neighborhood about (x, y), given by 

 
                   ),(),(),( yxyxXyxH optopt γ=  
where, 
                  

),(2arg),(
yxBRopt hXyx jp −=
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γγ

γ
 

5.  Applications 

The experiments was used two images one of references Barbara and an image of the optical 
sensor Landsat, band TM3 of the city of Campinas of the State of São Paulo Brazil.  

In Barbara's original image Illustration 1(a), we apply the filter ( Lh ) to simulate the 
effect of the observed image, obtain the Illustration 2(b). In the Illustration 2(c) we have 
filtration of the Illustration 2(b) by the lineal filter ( Hh ) and in the Holes 2(d), (e) show their 
filtrations by the filters MF and DB4 respectively. We repeat the experiment now for the 
observed image Illustration 3(a) with the same filters: Hh  obtain the image of the 
Illustration 3(b), FM have the image of the Illustration 3(c) and finally DB4 who 
corresponds the Illustration 3(d). Below used filters: 

 
Lh  = [1 0 1;0 4 0; 1 0 1]         = Low pass; 
Hh = [0 -1 0;-1 5 -1; 0 -1 0]    = High pass; 
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High pass filter: 
FM = [0.0078125 0.054685 0.171875 -0.171875 -0.054685 -0.0078125]; Mallat & Zhong 
(1992); 
DB4 = [-0.24 0.71 -0.62 -0.03 0.18 0.03 -0.03 -0.01]; Daubechies; 
 
Low pass filter: 
FM = [0.0078125 0.046875 0.1171875 0.65625 0.1171875 0.046875 0.0078125]; Mallat & 
Zhong (1992); 
DB4= [-0.03 0.03 0.04 -0.21 -0.01 0.62 0.71 0.22]; 
Daubechies; 

5.1 Visual Analysis 

The first evaluation of the methodology is the visual analysis of the percolated images. The 
resolution loss analysis by the application of a filtration is a qualitative approach most of the 
time. It visually is difficult to analyze an image with regard to the false borders creation and 
the contrast increase once that the quality of the analyzed images is very reasonable and most 
alterations are not sensitive to the human eye.  

5.2 Borders Detection 

The borders detection is one of the commoner operations used in the images analysis and 
there are lots of algorithms in the literature specialized to highlight and to detect borders. 

A borders detector can fail, when relating a nonexistent border; this it can be due to the 
noise, or simply to a bad drawing or a filtration. In addition, a borders detector can fail to 
when not relate a pixel of an existing border. Other fault situation occurs when the position of 
the pixel of a border is weak. In this research was adopted the method defined by Canny 
(1986) for evaluation regarding borders detection. 

The borders detector of Canny was chosen to for be one of the great existing detectors, 
for using near principles to the of a filtration, like a filtration, besides the results for images of 
optical sensors have been superior regarding tried traditional methods as Sobel, Prewitt, 
Roberts, among others 

Like quantitative measure, in order to validate the performance of filtering techniques for 
images of orbital sensors, was adopted the merit illustration of Pratt (1978), in the equation 
below: 

                                           { } , 
 1

1
,max

1
1 2∑
+

=
=

AI

i iiA eII
MDB

δ
 

where AI  it corresponds to the number of detected dots, iI to the number of dots of the ideal 

border, δ  represents a constant of scale and ie  corresponds to the distance between detected 
dot and the ideal border. 

The image of note that was used, to if measure MDB (border detection measure) is alike 
to 1.9504, because it introduces noise. If the used image was without noise the value of MDB 
is 1, which does not occur in this study, logo the value to be better should be nearest of 1 to a 
perfect border Table 1, being the value of the variable MDB reduced how much larger the 
mistake in the borders map. For the variable δ  was adopted the value 1/9, suggested in Pratt 
(1978). 
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We want select images that have the highlighted borders and that improve the contrast. We 
propose a contrast measure in order to detect the contrast in the original image and post-
filtration for analysis of the criterion of the contrast. Like contrast measure it adopted an 
expression defined by Morrow (1992). As, 
                                               

min(I)max(I)
min(I)max(I)MC

+
−

=  

where I  it corresponds to the image to what the contrast measure will be submitted. The 
measure will be obtained regarding the ash levels of the image I . It waits that after the 
filtration the value MC (contrast measure) whether you keep or it increase, but the borders of 
the image be highlighted. As well as the detection measure of introduced border, the contrast 
measure of the percolated image will be compared regarding a free image of noise 
(synthetical), which should introduce maximum contrast, and regarding the original image. 
The images were submitted to the following 

5.3.1 Methodology: 

1 -It calculates the contrast measure in the reference image;  
2 - It calculates the contrast measure in the original image; 
3 - It evaluates contrast alteration in the image percolated regarding the synthetical image. 

In the results of measure of obtained contrast, the value in the reference image should be 
the maximum value regarding the too much. MC is satisfactory when the contrast in the 
percolated image is at least alike to the original, or when lower than the original introduces 
highlight of the borders.  

Soon after the table 2 describes the data measured with the observed image (IO) and the 
synthetical image.  

IO=observed Image; 
IFLP=Image percolated with Laplace's Filter; 
IFLM=Image percolated with Laplace and base Mallat and Zhong; 
IFLDB4=Image percolated with Laplace and base DB4. 
 
                                                        Table 1. For observed image. 

 IO IFLP IFLM IFLDB4 

MC 0.733 1 1 1 

MDB 1.9504 1.1677 1.658 1.2559 
 
IOs=synthetical original Image; 
IFLPs=synthetical Image percolated with Laplace's Filter; 
IFLMs=synthetical Image percolated with Laplace and base Mallat and Zhong; 
IFLDB4s=synthetical Image percolated with Laplace and base DB4. 
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5.3 Contrast Measure 



  

 
 
                Table 2. For synthetical image. 
 
 
 
 
 
 

6. Conclusion 

The numeric results of contrast and border indicate that the utilization of the base BD4, it was 
to what it introduced the best results when compared with the base filtration of Mallat & 
Zhong (1992). The results were doing well evaluated by the quantitative measures of contrast 
and border, indicating that the contrast is in the observed image is satisfactory for the three 
filtration in when that the borders measures show that the lineal filter creates falser borders 
regarding the filter DB4. Logo, the filtration with DB4 can be used with more precision in 
relation the other.  
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 IOs IFLPs IFLMs IFLDB4s

MC 0.8450 0.8959 0.9767 1 

MDB 1.3103 1.1262 1.1027 1.2816 
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Figure 1. It shows the images prosecuted by filters indicated by (a), (b), (c), (d) and (e).  

(d) 
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(d) 

Figure 2. It shows the images prosecuted in 
the Illustration 2(a), (b), (c) and (d). 

Figure 3. It shows the images prosecuted 
by filters in the Illustration 3(a), (b), (c) 
and (d). 

(a) 

(b) 

(c) 

(d) 

(d) 

(b) 

(c) 
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