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Abstract. The spatial distribution of very large trees in primary Amazon forest is extracted from a digital model 
of interferometric forest height by an approach of local maximum filtering. The spatial point patterns of very 
large trees are modeled by a series of Markov point process models. Spatial distribution is regular, and 
interaction decreases with distance; very large trees are shown to exert repulsive interaction with their 
neighboring very large trees. 
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1. Introduction 

In ecological forest studies, some researchers have paid special attention to a sub-
collective of only the largest trees. A particular ecological significance for the carbon regime, 
patterns of succession, and species diversity is attributed to very large trees. Chambers et al. 
(2001) depict that in tropical forests half of the above-ground biomass is contained in very 
few tree individuals. Milton et al. (1994) characterize very large trees in tropical forests as 
reproductively dominant, and therefore strongly influential on forest structure and 
composition. In this paper, trees with dominant crown position are very large trees (VLTs), 
that therefore appear in data from radar interferometry (see Neeff et al., 2004a). 

Three-dimensional stand structure has been called �the most important of all stand 
characteristics� for determining its biodiversity and ecological stability (Pretzsch, 1997). 
Stochastic point process have been identified as the appropriate tool for examining spatial 
structure of trees in temperate and tropical forests (e.g. Pretzsch, 1997; Stoyan and Penttinen, 
2000). 

2. Material and methods 

2.1  Study area 
The study area is situated in the surroundings of the Tapajós National Park south of Santarém 
in the Brazilian Amazon at W 54.93 DD, and S 3.19 DD. The climate according to Köppen is 
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Amw (variation of tropical monsoon) with an average annual rainfall of 1,750 to 2,000 mm, 
and a yearly temperature average of 26 °C. Hence, the life zone is classified as tropical moist 
forest according to the Holdrige system. 

2.2 Remote sensing data 

An area of approximately 1,300 km2 was mapped at the end of 2000. The data were collected 
by the airborne AeS-1 sensor (Aerosensing Radarsysteme GmbH, Germany), which makes 
use of interferometric synthetic aperture radar (InSAR) technology. It operates on X-band 
(9.55 GHz) with one polarization (HH) and fully polarimetric on P-band (technical properties: 
wavelength 72 cm; middle frequency 415 MHz; depression angle 45° (37-51°); mean flight 
height 3,216 m; range resolution 1.5 m; azimuth resolution 0.7 m for 1 look slant range 
image). 

The longer wavelengths pass through the vegetation cover and are used to generate a 
DEM (Digital Elevation Model). The short wavelengths are reflected from the top of forest 
canopies and are used to generate a DSM (Digital Surface Model). Both models are 
thoroughly calibrated and have a spatial resolution (pixel size) of 2.5 m. The difference 
between the DSM and DEM is taken to represent height of vegetation. This height measure of 
vegetation is called "interferometric height" hint (Dutra et al., 2004; Neeff et al., 2004b).  

Neeff et al. (2004b) depict interferometric height in primary forests as being dependent on 
only a sub-collective of the largest trees of the forest. Therefore, the canopy and the crown 
structure that can be recognized in the digital height model is a function of only the largest 
trees. 

Sample blocks of undisturbed primary forest were extracted from the digital height 
model. Namely, three contiguous areas of 1,000 x 1,000 m = 100 ha each were selected, that 
are reasonably far away from roads etc. 

2.3  Local maximum filtering 
Local maximum filtering (LM filtering) extracts tree locations from remote sensing imagery. 
Even though many other approaches have been proposed, LM filtering has yielded good 
results, is fairly simple to implement, and has therefore been used extensively (Wulder et al., 
2000). In LM filtering, a pixel window is passed over an image, to determine for each pixel, 
whether its digital number is higher than all other pixels in the window. These local maxima 
are identified as tree locations. The application of LM filtering to a digital height model 
directly makes use of the three dimensional canopy structure of forests, where the areas of 
maximum vegetation height obviously coincide with the tops of crowns. 

2.4  Spatial point patterns 
The statistical methodology regarding the analysis of spatial point patterns, that is applied in 
this paper comes primarily from the book by Cressie (1993), from which most of the 
terminology is taken: A spatial point process is a stochastic model, that governs the location 
of events si in some subset of Rd. In this paper we are interested in the realization of the 
process as a spatial point pattern of trees in the forest: si∈A⊂R2. 

Point processes are commonly characterized and analysed by their moment measures. The 
first-order intensity λ corresponds to the number of events per unit area. The second-order 
intensity is usually addressed by the K-function, which effectively summarizes spatial 
dependence over a wide range of scales. Here an estimator K,∃ for the empirical K-function is 
used, that corrects for edge effects by a guard area: 
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λ · K(h) = E(# extra events within distance h  of a randomly chosen event),  h > 0, 
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where ||si � sj|| is the distance between events si and sj; I is an indicator function I = {1 if 
||si � sj|| ≤ h, 0 otherwise}; N is the number of points in a bounded study region A, and N+ is 
the number of events in A and a surrounding guard area. 

Parametric models for spatial point processes can be fitted to observed point patterns. 
Here, the so-called Markov processes are used to describe the observed spatial pattern of very 
large trees in primary forests. Markov processes are appropriate for describing the point 
pattern of old growth forests because VLT spacing tends to be more uniform than clustered. 
This happens because the very large trees effectively outcompete other vegetation in a circular 
zone surrounding each VLT. An observed spatial point process in A is Markov of range ρ if 
the conditional intensity at si, depends only on the events in the circle of radius ρ centered at si 
(excluding si itself). These models are most commonly used to model repulsive interaction 
that leads to a regular point pattern. Two events interact and are called neighbors if their 
distance hij = ||si � sj|| is less than ρ. It is convenient to describe the interaction structure of the 
process in terms of pair-potential functions, that usually are functions of the distance h (for 
simplicity used here instead of hij for the distance between two points i and j) only Ψ(si, sj) = 
Ψ(hij). air potentials range from Ψ(h) < 0 (attraction) over Ψ(h) = 0 (independence) to Ψ(h) > 
0 (inhibition), where Ψ(h) = ∞ corresponds to complete inhibition. The distribution of a point 
process is often described in terms of its likelihood l(θ), given its parameters θ: 

 l(θ | {s1, ..., sn})
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where n is the number of points, and β reflects the first order intensity of the process. So, 
the probability of observing two points si, sj at distance hij apart is )( ijhe Ψ− . 

Some special cases of the Markov process include the Poisson process, which is the 
model of complete spatial randomness (CSR), the model of simple sequential inhibition (SSI), 
the Strauss process (Strauss), a Strauss hard-core model (StrHC), and a soft-core process 
(SC), which are given by (for simplicity, again h is used instead of hij for the distance 
between two points i and j):  
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3. Results 

3.1 Extraction of tree locations from digital height model 
LM filtering was used to extract the positions of very large trees from the DHM. LM 

filtering by an approximation of a circular window with radius of three pixels (= 7.5 m) 
yielded particularly good results. Tree locations are marked at those points in the images were 
characteristic maxima are observable, that most probably coincide with crowns of trees. 
Because of the cost of conducting a field based survey of tree locations, we were unable to 
fully assess the accuracy of the derived tree positions using the image methods described 
previously. Based on our experience in this forest type, and also based on visual examination 
we judged this method to provide sufficient accuracy for the purpose of conducting 
exploratory point pattern analysis. Visual examination of the results justifies the approach 
adopted for selection of filter size. The resulting spatial point patterns are displayed in Figure 
1. Intuitively, the pattern does not seem to contain clusters, but rather to be fairly regular. 

 
Figure 1: Spatial pattern of very large trees in sample block #1. Plot area covers 1000 x 1000 
m = 100 ha. 

3.2  Distance between very large trees 
The spatial point patterns from LM filtering of the sample blocks are analyzed by simple 
summary statistics. The intensities of the VLT point patterns are estimated as λ1 = 6.91 ha-1, 
λ2 = 6.51 ha-1, and λ3 = 6.78 ha-1. For each tree, the distance to its nearest neighbor is 

computed. The mean distances for the three blocks turn out to be very similar: W,¯1 = 24.2 m, 

W,¯2 = 25.1 m, W,¯3 = 24.2 m. Since λi and W,¯i from the different blocks are very similar, 
the spatial pattern, at least at small scales, can be considered homogeneous. 

3.3 Modeling of point patterns 

Markov point processes are fitted to the point patterns as resulting from the LM filtering of 
the DHM. No maximum likelihood estimators are available for the Strauss process (Strauss), 
the Strauss hard-core model (StrHC), or the soft-core process (SC). The fitting procedure 
maximizes the pseudolikelihood (MPL) and utilizes the tools given in the spatstat 1.2 library 
of R. The parameters of the homogeneous Poisson process (CSR) and the model of simple 
sequential inhibition (SSI) are fitted by their maximum likelihood estimators. 
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Table 1:  Coefficients of fitted models for spatial point patterns in three sample blocks. 
Considered models are: CSR - homogeneous Poisson process, SSI - simple sequential 
inhibition, Strauss - homogeneous Strauss process, StrHC - Strauss hard-core, SC - soft-core. 

 
Model parameter block #1 block #2 block #3 

CSR λ 0.000691 0.000651 0.000651 
 γ 1 1 1 

SSI β 0.0007575 0.00071 0.0007445 
 ρ 9 9 9 
 γ 0 0 0 

Strauss β 0.0007575 0.00071 0.0007445 
 ρ 10 10 10 
 γ 0.1322 0.1227 0.1327 

StrHC β 0.001029 0.001007 0.0009785 
 ρ0 9 9 9 

 ρ1 30 30 29 

 γ0 0 0 0 

 γ1 0.7963 0.7456 0.7907 

SC β 0.0008028 0.0007245 0.0007629 
 σ 10.82 15.27 13.68 
 κ 0.359 0.2564 0.2821 

 
Model Selection between different parametrizations (different values of ρi and κ) for the 

Strauss, the StrHC, and the SC models, is done by fitting a series of models. The estimates for 
MPL of different parameter combinations were compared and those with the highest 
pseudolikelihood values were selected. An example curve of the MPL of the SC model in the 
three blocks is displayed in Figure 2. The parameters for all final models are displayed in 
Table 1 for the three point patterns. The parameter estimates are similar between the sample 
blocks. 

 
Figure 2: Fitting of a soft-core model to the observed point patterns in sample blocks #1-3. 
Displayed are the negative log-pseudolikelihood (mpl) curves for different parametrizations 

1625



of the soft-core models by their interaction parameter κ. Minima (final model) are marked by 
circles. All values are scaled by 1 / max{-log mpli} for visual comparison. 
 

Assessment of the fitted models draws on the empirical and the theoretical K-functions of 
the processes, and on Monte-Carlo simulations. In most cases expressions for the theoretical 
K-function are available as well, and then empirical and theoretical K-functions can be 
compared to see the general fit of the model to the data. In the Monte-Carlo approach, 
repeated simulation of a point pattern with the parameters from model fit yields a series of 
patterns with associated simulated empirical K-functions. These series provide confidence 
intervals for the true K-function, given a particular point processes model fits the data (see 
Figure 3). The K-functions for models of CSR, SSI, Strauss and StrHC are displayed in 
Figure 3. All four models fit the data well for larger scales at h= 50-75 m, all of them display 
asymptotes of CSR that the functions approach from below. However, at lower scales the K-
functions exceed the confidence intervals. Thus, these models do not provide a satisfactory fit 
to the data; fit is particularly important at lower scales. Of these 4 models, the Strauss hard-
core fit the data the best. There were significant deviations from the Strauss hard-core 
confidence intervals for distances under 30 m, but the deviations were of a much smaller 
magnitude than with the other three models.  However, there was still a significant amount of 
regularity that was not expained by this model at distances less than 30 m. 

 
Figure 3: K-functions of sample block #1 for various point process models. Legend: CSR - 
homogeneous Poisson process, SSI - simple sequential inhibition, Strauss - homogeneous 
Strauss process, and StrHC - Strauss hard-core. All functions are transformed by the 
theoretical K-functions of their respective processes to L = K-1 - h, e.g. LCSR = √KCSR /π - h. 
The bold solid lines are the empirical K-functions, the solid (non-bold), horizontal line is the 
theoretical K-function, and the dotted lines correspond to the confidence intervals from 
Monte-Carlo simulation (α = 0.1, n = 20), given the fitted models. 
 

The SC model (Figure 4) is the model that fits the data best. The K-functions in Figure 3 
all provided evidence of strong regularity at scales less than 50 m, that was not accounted for 
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by the models tested. The degree of regularity decreased with increasing distance. Therefore 
we expect that the soft-core inhibition model will be superior because it lets the interaction 
continuously decrease with distance. The K-functions for all three plots are displayed in 
Figure 4. In all three cases, the empirical K-function remains within the confidence intervals 
from Monte-Carlo simulation over the whole range of distances. Apparently the soft-core pair 
potential function was a feasable representation of the point pattern for all three image blocks. 
This model may prove useful in characterizing the point pattern of VLTs for other forest types 
and locations in Amazonia. 

 
Figure 4: K-functions of final model in all three sample blocks. Solid lines correspond to 
empirical K-functions, dotted lines are confidence intervals from Monte-Carlo simulation α = 
0.1, n = 20), given the fitted soft-core model (SC). All functions are transformed for display 
purposes by the theoretical K-function under CSR to L = √KCSR /π - h. 

4. Discussion 
Very large trees in the Amazon forest are of utmost importance for forest structure. Because 
of their large size and dominant position in the forest, the VLTs can be detected by radar 
remote sensing, and a relatively simple approach of LM filtering allows us to extract their 
locations from a digital model of forest height. These locations form a spatial point pattern, 
that is analysed using spatial statistics. 

Exploratory statistics describe a sub-collective of only seven trees per hectare, that 
contain a huge fraction of the forest�s above-ground biomass. They form a fairly regular 
pattern, and have an average spacing of ca. 24 m (see Figure 1). Modeling of the spatial point 
patterns by Markov processes reveals a certain repulsion between neighboring VLTs. So, 
given one VLT, it is very improbable to find another very large tree close by, because 
individuals would inhibit each other. The preference of a soft-core model (SC) over the 
alternatives suggests that this repulsion is a function of distance; locations of very large trees 
are almost independent only at distances above ca. 29 m. Moreover, the repulsive dependence 
is shown to decrease smoothly with distance. Therefore, it is possible to find VLTs in close 
proximity: it is just extremely unlikely. 

Very large trees have been described in the literature as drivers of forest sucession by the 
mechanism of gap formation and regeneration in gaps when one of the huge individuals 
eventually falls (Brokaw, 1982). These processes, i.e. natural degradation and regeneration, 
can be deduced to happen at a scale of about 24 m, that corresponds to the spacing of the 
VLTs. 
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