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Abstract. Geosensor networks comprise small electro-mechanical devices that communicate over a wireless 

network. These devices collect environmental measures and send them to a base station. Energy consumption and 

data routing are critical factors for efficient geosensor networks. The usual cluster-based data routing protocols for 

sensor networks group the nodes based on their geographical closeness and aggregate their data to save energy. 

However, this clustering procedure does not produce the best data summaries. We propose to group the nodes into 

spatially homogeneous clusters, which consider both the geographical distance and the similarity of measurements 

between the nodes. Through simulated experiments, we have concluded that spatially homogeneous clusters 

produce better spatial zones identification and data summaries with a higher statistical quality if compared with the 

usual clustering methods. Besides, spatially homogeneous clustering can be seen as a tool for spatial sensor data 

mining, since their clusters represent the partition of the sensor field that has maximum internal homogeneity 

regarding the values of monitored variable. To make possible the use of our data-aware clustering proposal to 

collect the sensors’ data, we present a design guideline for a cluster-based data routing protocol, the HR-DASH.  
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1. Introduction 

 The advances in wireless and miniaturisation technologies are making possible the 

development of the sensor networks, a new instrument for the remote sensing of the physical 

world (Elson and Estrin, 2004). 

 Sensor networks are composed by a large number of small nodes. These nodes are 

electro-mechanical devices that measure environmental characteristics such as temperature, 

pressure, humidity and luminosity (Figure1, left side). These data are disseminated through 

wireless communication among the nodes until a base station is reached. Once sensor networks 

are deployed in the study region, they work without human attendance. 

 The environmental monitoring is one of many potential uses of this emerging 

technology (Xu, 2002), especially for hostile environments. According to Martinez et al.  

(2004), the sensor networks will make possible a realistic monitoring of the natural 

environmental. In their work, the authors discuss how the environmental monitoring evolved 

from data logging to sensor networks and describe the GlacsWeb project, an ongoing research 

in subglacial bed deformation.  

 Other environmental applications involving sensor networks are described in the 

literature. Among them, we have the monitoring of the environment of rare and endangered 

species of plants in a volcano neighboring (Biagioni and Bridges, 2002); the monitoring of the 

habitat of seabirds (Mainwaring et al., 2002); the microclimate monitoring throughout the 

volume of giant trees (Culler et al., 2004);  the flood monitoring to provide warnings and the 

monitoring of coastal erosion around small islands (EnviSense-SECOAS). Until recently, 

experiments have been run on small-scale sensor networks and no large-scale networks have 
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yet been deployed in practice. However,  as the sensors become smaller and cheaper (Warneke 

et al., 2001), sensor nodes are expected to be densely deployed in the environment. 

 

 
 

Figure 1. Left side: MICA-2 (by Intel and University of California- Berkeley).         

Rigth side: spatial distribution of luminosity measurements   
 

Some sensor networks are designed to collect data whose geospatial information is 

important. To stress their geographic characteristic, these networks are usually defined as 

geosensor networks (Nittel and Stefanidis, 2005). The main goal of a geosensor network is to 

collect geospatial data while keeping the energy consumption at an acceptable level.  

Geosensor networks are an application-driven technology. The temporal resolution of the 

data determines their delivery model while the required spatial resolution defines the degree of 

data summarization. Tilak et al. (2002) have identified three data delivery models: continuous 

data collection and delivery; continuous data collection but the data delivery is triggered by pre-

defined events; and on-demand data collection and delivery (queries). On the spatial resolution, 

some applications need the raw data of all sensing points (Chu et al., 2006; Tulone and 

Madden, 2006), whereas others need just a summary of all sensors’ data, as those TAG 

(Madden et al., 2002) has been designed for. In the middle of these two extreme cases, there are 

applications that accept an intermediate degree of data summarization, as maps of temperature 

and relative humidity, for instance. These applications can have goals as identifying zones of 

interest such as hot and cold zones. Sensors’ data are summarized over subregions, pre-defined 

(Goldin, 2006) or not, and the spatial distribution of these summaries provides a report of the 

data variability over the entire region.   

In this paper, we are interested in applications that require a continuous data delivery and 

an intermediate degree of data summarization.  

For continuous data delivery, the hierarchical cluster-based data routing protocols are 

considered to be the most energy efficient alternative (Heinzelman et al., 2002). Multiple 

cluster-based protocols as LEACH and LEACH-C (Heinzelman et al., 2002) are suitable for 

applications that admit data summaries over subregions of the sensor field. A cluster-based 

protocol assembles the sensor nodes into clusters before the data transmission. Except for the 

clustering procedures as in Tulone and Madden (2006), the usual clustering algorithms 

considers only the nodes closeness, which we define as ordinary spatial clustering. A node 

chosen as the cluster head receives data from all nodes in its cluster, aggregates these data and 

sends the summary to the base station. Clustering the nodes keeps most of the communication 

inside the clusters while data aggregation reduces the messages volume traveling through the 

network. These strategies together allow for energy saving.  

6060



Data aggregation presumes nearby nodes have correlated data. Thus, they are similar to 

each other and one can aggregate the nodes’ data of an ordinary spatial cluster to represent this 

cluster. 

We agree with this reasoning but we believe presuming data correlation is not enough to 

produce data summaries that are the best estimates of the summarized data. A partition of nodes 

that considers only their geographical location is missing the most important: the measurements 

themselves. To make our point clear, consider Figure 1 (right side), which presents the spatial 

distribution of luminosity measurements, for instance. Suppose we regularly deploy a geosensor 

network in the region. The area delimited at right bottom corner has a lower spatial variability 

in its measurements than the delimited area at upper left corner. Suppose we use one single 

cluster to summarize the data of each area. The data summary of the first area estimates better 

the summarized data than the data summary of the second area. Besides, a single cluster could 

summarize the data in the first area whereas the second area would require a larger number of 

clusters, to account for the increased spatial variability. To capture these different requirements, 

the nodes partition might consider the nodes measurements in addition to their geographical 

location.  

Based on these considerations, we present the contributions of this paper. 

 

1.1. Our proposal  
 

We propose a data-aware clustering procedure that groups the nodes considering the spatial 

homogeneity of the nodes’ data in addition to their location. Our hypothesis is that data 

summaries based on spatially homogeneous clusters will have a better statistical quality if 

compared with data summaries based on ordinary spatial clusters. A statistical quality measure 

expresses how well the data summary sent to the base station estimates the data collected by the 

nodes. 

In this paper, our major concern is to examine how the spatial arrangement of the clusters 

in a geosensor network affects the statistical quality of the data received by the base station. We 

compare spatially homogeneous clusters with ordinary spatial clusters regarding the statistical 

quality of their summaries.  

To make possible the use of our clustering proposal in the data collection and address the 

issue of energy saving, we propose a guideline to design the HR-DASH. The HR-DASH is a 

cluster-based routing protocol that uses a spatially homogeneous partition of the nodes instead 

of the usual ordinary spatial clusters. 

The remainder of this paper is organized as follows. In section 2, we define the spatially 

homogeneous clusters and give a brief description of SKATER, the procedure for obtaining 

such clusters.  Section 3 presents the main results of simulated experiments comparing ordinary 

and spatially homogeneous clusters, based on the statistical quality of their data summaries. In 

section 4, we present the main features of the HR-DASH protocol. Finally, section 5 draws 

some concluding remarks. 

2. Spatially Homogeneous Clusters 

In contrast to ordinary spatial clusters, the definition of spatially homogeneous clusters 

considers explicitly the nodes’ attributes besides their geographical location. Spatially 

homogeneous clusters are clusters resulting from a partition procedure with three properties. 

First, nodes belonging to same cluster have to be similar to each other in some predefined 

attributes (cluster internal homogeneity). Second, nodes belonging to different clusters have to 

be different from each other (heterogeneity among clusters). Third, the nodes of a same cluster 

must belong to a predefined neighborhood structure (closeness or contiguity). The clustering 

proposed by Tulone and Madden (2006) assembles clusters based on the similarity between the 
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head node and the nodes inside its range of communication. However, there is no warranty the 

first and second properties are satisfied. So, they cannot be classified as spatially homogeneous 

clusters. 

To get the spatially homogeneous clusters, we propose the use of the spatial clustering 

algorithm developed by two of the authors, the SKATER (Spatial ‘K’luster Analysis by Tree 

Edge Removal) (Assunção et al., 2006). This algorithm is a strategy for transforming the 

regionalisation problem into a graph partitioning problem. SKATER works in two steps. First, 

it creates a minimal spanning tree (MST) from the graph representation for the neighborhood 

structure of the geographic entities. The cost of an edge represents the similarity of the entities’ 

attributes, defined as the Euclidean squared distance between them. The MST represents a 

statistical summary of the neighborhood graph based on the entities’ attributes. In the second 

step, SKATER performs a recursive partitioning of the MST to get contiguous clusters. The 

MST partitioning considers explicitly the clusters internal homogeneity.  

In the geosensor networks context, the graph vertices are the sensor nodes and the cost of an 

edge connecting a pair of vertices is the similarity between the nodes’ data.  

Spatially homogeneous clustering offers the possibility of transforming the undelivered raw 

data into information, since its clusters represent the partition of the sensor field that has 

maximum internal homogeneity regarding the values of monitored variable. This information 

cannot be directly extracted from the summaries based on ordinary spatial clusters or on the 

proposed clusters in Tulone and Madden (2006). As a result, spatially homogeneous clustering 

can be seen as a tool for spatial sensor data mining. 

3. Assessing the Performance of the Spatially Homogeneous Clusters 

This section presents the main results of the simulated experiments we have carried out to 

provide a preliminary evaluation of the performance of the spatially homogeneous clusters. 

Some results were not presented here for briefness. 

3.1. The simulated experiments  

We have simulated datasets with spatial autocorrelation using a grid of 10000 cells (100 x 100). 

We refer these data as original data. These datasets were characterized by extreme zones, which 

are clusters with high values (clear zones) and clusters with low values (dark zones). The zones 

size was controlled by a scale parameter. Figure 1 presents the spatial distribution of a dataset 

simulated using a scale parameter equal to 20. We have also used the values 5, 10 and 15. The 

higher the scale value, the larger the zone size. To each value of the scale parameter, we have 

simulated 10 spatial datasets. 

We have delimited the extreme zones of the spatial datasets using techniques of image 

classification. The result was the zones image (Figure 2, left side), which present the clear and 

the dark zones. We have used these images to evaluate the ability of the clustering methods to 

identify the extreme zones. 

To sample the spatial datasets, we have deployed a geosensor network with 100 nodes in a 

regular fashion, as illustrated by the black dots at the right side of the Figure 2. The data 

collected by a sensor is the value of the cell in which it was placed. We refer to this sample as 

geosensor data. The sensor’s data was assigned to all cells belonging to its area of influence, 

that is, the set of cells of which the sensor was the nearest node.  

To choose the number of clusters to be assembled by the clustering methods, we have 

adopted the expression proposed by Heinzelman et al. (2002). This expression finds the optimal 

number of clusters that minimizes the total energy dissipated in a data transmission of the 

LEACH. Adopting the radio energy model as in Heinzelman et al. (2002), we have found six as 

the optimal number of clusters. 
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Figure 2. Left side: zones image of the dataset in Figure 1.    Right side: geosensor data 

and the network’s nodes.  

 

To get the ordinary spatial clusters, we have simulated the LEACH clustering procedure 

(Heinzelman et al., 2002). We have chosen the cluster heads randomly among all nodes, but 

constrained to a minimal distance of 30 meter between them. This constraint tries to simulate 

the choice of cluster heads by LEACH-C (Heinzelman et al., 2002), avoiding to agglomerate 

the head nodes. To assemble the clusters, we have associated the remaining nodes to their 

nearest cluster head. Since the cluster heads location can affect the performance of ordinary 

clusters, we have used 10 different cluster heads arrangements for each spatial dataset.  

The spatially homogeneous clusters were obtained by the SKATER procedure (Assunção 

et al., 2006). 

To each cluster k, we have calculated the cluster summary CMk as the average of the data of the 

nodes belonging to the cluster k. We have defined the statistical quality of a cluster summary 

(SQk) using the following expression 

∑
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where  xik is the original data of the cell i that belongs to the union of the area of influence of all 

nodes of the cluster k ; Nk is the number of cells belonging to the area of influence of the cluster 

k. The statistical quality measure SQk is the average relative error of the cluster mean CMk. It 

measures how far the cluster summary CMk is from the original data, in average, when these 

original data are replaced by CMk. The smaller the values of SQk, the better the cluster 

summary CMk represents the individual cell values. SQk is a measure of the local performance 

of the clusters summaries. 

3.2 The results 

We have evaluated the SQk values of the spatially homogeneous (SH) and the ordinary spatial 

(O) partitions. Figure 3 presents the boxplots1 for SQk values according to the scale parameter. 

For spatial datasets with the smallest scale, the ordinary clusters have had a better local 

performance. The geosensor data collected at these spatial datasets simulate data with no spatial 

autocorrelation (random data). The geosensor data could not capture the spatial patterns of the 

                                                
1 The bottom and the top of the box represent the percentiles 25 and 75, respectively. Therefore, the box height is a 

measure of the data variability. The line drawn across the box represents the median and the points outside the 

dashed lines represent the outlier values. If there are not outliers, the ends of the inferior and superior dashed 

lines represent the minimum and the maximum values, respectively. 
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original data, because the distance between the nodes was larger than the zone size. The 

superior performance of the ordinary clusters happens because ordinary clustering groups the 

nodes in a random fashion, whereas the spatially homogeneous clustering tries to found patterns 

that geosensor data were not able to capture.  

  

 
Figure 3. Boxplots for SQk values. 
 

At the largest scales (10, 15 and 20), the clusters produced by both clustering methods have 

a good statistical quality. The SQk median values are smaller than 0.10, which is the coefficient 

of variance of the simulated spatial datasets. The larger the scale parameter, the higher is the 

statistical quality of the clusters. The most of the SQk values of spatially homogeneous clusters 

are smaller than the values of ordinary clusters. Thus, when geosensor data are able to capture 

the spatial patterns of the original data, the local performance of the spatially homogeneous 

clusters is better than the performance of the ordinary clusters.  

We have used the summaries CMk to classify the clusters into clear or dark, using a 

criterion similar to that used to produce the zones image. Figure 4 presents the results of this 

classification for the two clustering methods, using the geosensor data of the Figure 2. The 

black clusters are those classified as dark and the white clusters represent the clear clusters. 

  

  
Figure 4. Two partitions of the  geosensor  network  of   the Figure 2: ordinary spatial 

clusters (left side) and spatially homogeneous clusters (right side). 
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Comparing figures 2 and 4, we see the spatially homogeneous clusters could identify more 

extreme spatial zones than the ordinary spatial clusters.  

The comparison between figures 2 and 4 represents what happens with the spatial datasets 

simulated using the other scale parameters. The spatially homogeneous clusters was able to 

identify zones even when they were small and the geosensor data did not seem to reveal any 

aspects of spatial autocorrelation (scale parameter equal to 5). 

Considering the percentage of clusters that intersects an extreme zone and are classified as 

extreme, the performance of spatially homogeneous clusters has been superior to the 

performance of ordinary clusters at all scales. 

4. The HR-DASH Protocol 

To enable the use of the spatially homogeneous clusters and address the issues of energy 

saving, we present the concepts and the requirements for the HR-DASH (Hierarchical Routing 

via Data Aggregation with Spatial Homogeneity) protocol. Our proposal is designed for 

applications that require data continuously and accept summaries of these data over subregions 

of the monitoring field.  

At the beginning of the network operation, all nodes send their data to the base station. The 

HR-DASH runs SKATER at the base station, which communicates the nodes about their 

clusters. After the first data collection, HR-DASH works in rounds as LEACH (Heinzelman et 

al., 2002). Each round has a set-up phase, when SKATER design the clusters, followed by a 

steady-state phase. In this phase, nodes collect data continuously but only communicate extreme 

changes to the base station and the head node. There are two reasons to do this. Either the 

database has to be updated, allowing the user to determine if some important event occurred, 

such as a high temperature peak. Alternatively, the base station must decide if these changes are 

large enough so that SKATER should redesign the spatially homogeneous clusters. The HR-

DASH uses the statistical properties of the data to classify a value change either as a relevant 

one or not. 

Changes that are not extreme, but important, are communicated only to the head node to 

allow for local monitoring. Many such changes detected over a single cluster signal that 

something is happening and the base station should be reported. Thus, the head node sends the 

cluster summary to the base station when there is a relevant change in its value. If a node does 

not send its data to its head, the missing data is replaced by the mean value the cluster head 

receives from the base station in the set-up phase. Given the cluster internal homogeneity, the 

cluster mean is a good estimate for the measures. Besides, the missing data replacement allows 

continuous evaluation of the cluster mean. 

The HR-DASH strategy of communicating to the base station only the extreme changes 

allows for energy saving, because it reduces the number of these costly transmissions. The 

number of transmissions inside a cluster is also reduced, since nodes send their data to cluster 

head only if there are relevant changes in their values.   

We can configure the HR-DASH protocol to partition the nodes according to a criterion of 

minimum homogeneity instead of the usual fixed number of clusters. This allows for using 

fewer clusters where the values of the variable are similar, which saves energy.  

5. Concluding Remarks 

Within a few years, miniaturized and networked sensors will have the potential to be embedded 

in several kinds of environments and allow a continuous monitoring (Elson and Estrin, 2004). 

Geosensor networks will produce a revolution in our understanding of the environment by 

providing observations at temporal and spatial scales that are not currently possible. Deciding 
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how these data will be routed to the base station is crucial, since data routing is an important 

consumer of energy, the most critical resource of the network. 

The main contributions of this paper are three fold. First, we have proposed a data-aware 

clustering procedure that groups the nodes into spatially homogeneous clusters.  

Second, we have compared our clustering proposal to the usual clustering procedure of 

cluster-based protocols. We have shown that spatially homogeneous clusters were able to 

produce data summaries with a higher statistical quality, improving the posterior statistical 

analysis. In addition, they get better extreme zones identification.  

Finally, we have described the main ideas of the HR-DASH, a protocol to enable the use of 

our clustering proposal in the data routing. Future work includes the complete specification of 

the HR-DASH protocol and the evaluation of its energy efficiency.  
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