Uso de imagens do sistema SAR-R99B para distinguir culturas agrícolas

Wagner Fernando da Silva¹ Antonio Roberto Formaggio¹ Bernardo Friedrich Theodor Rudorff¹ José Cláudio Mura² Waldir Renato Paradella¹

^{1,2} Instituto Nacional de Pesquisas Espaciais - INPE Caixa Postal 515 - 12245-970 - São José dos Campos - SP, Brasil ¹{wagner, bernardo, formag, waldir}@dsr.inpe.br ²mura@dpi.inpe.br

Abstract: Synthetic Aperture Radar – SAR images are an important alternative to obtain information on agricultural crops under cloudy conditions. The SIVAM (Sistema de Vigilância da Amazônia) have three SAR-R99B airborne sensors that allow to acquire polarimetric images at X and L band. The objective this work is to evaluate the SAR-R99B images acquired in L band to discriminate among different crops. The multipolarized SAR images showed to be indicated to discriminate among analyzed crops. Best results were obtained with the VV-HV-HH and VV-HV polarizations. For single polarization the best result was obtained with the VV polarization.

Palavras-chave: SAR-R99, crop discrimination, cluster analysis, distinção de culturas, análise de agrupamento.

1. Introdução

Imagens orbitais adquiridas por sensores óticos sofrem limitações de aquisição por cobertura de nuvens. Essa limitação se agrava ainda mais em países tropicais que concentram a sua produção agrícola no verão, período no qual a incidência de nuvens é maior. Imagens de sensoriamento remoto têm sido cada vez mais utilizadas nas aplicações agrícolas, como exemplo pode-se citar os trabalhos de Ippoliti-Ramilo et al.(1999) e Rudorff et al. (2005). O mapeamento e distinção de culturas são informações essenciais para tais aplicações. Entretanto, muitas vezes imagens ópticas livres de nuvens não estão disponíveis. Imagens de radar de abertura sintética (*Synthetic Aperture Radar* – SAR) surgem como uma alternativa para contornar essa limitação, pois são obtidas por sensores ativos que atuam na faixa espectral de microondas e praticamente não sofrem influência por cobertura de nuvens.

A interação da radiação de microondas com os alvos agrícolas é determinada por fatores elétricos e geométricos e por esse motivo torna-se dependente da freqüência de operação, da polarização e do ângulo de incidência em que o sensor opera (Brisco e Brown, 1998 e Paris, 1983). Segundo Stankiewicz (2006), imagens SAR adquiridas sobre regiões agrícolas contêm informações que permitem a distinção de culturas agrícolas. Utilizando imagens da banda L Ulaby (1980) e Riedel e Schimullius (2003) encontraram resultados satisfatórios para distinguir diferentes culturas. Entretanto, faltam estudos sobre a identificação e distinção de culturas comumente cultivadas no Brasil.

O Sistema de Vigilância da Amazônia – SIVAM possui três aeronaves EMB-145 equipadas com sistemas SAR-R99B. Esses sensores operam nas bandas X (9,3 GHz) e L (1,28 GHz). O subsistema da banda X opera na polarização HH e permite adquirir dados interferométricos. O subsistema da banda L tem a capacidade de adquirir dados polarimétricos, ou seja, imagens nas polarizações HH, HV, VH e VV e informações de fase da radiação retroespalhada (Defesanet, 2003). Os sistemas SAR-R99B suportam missões de vigilância e mapeamento e também missões híbridas.

A hipótese abordada é que há possibilidade de aplicação das imagens adquiridas por sensores SAR-R99B para a distinção e o mapeamento de culturas agrícolas. Dessa forma, o

objetivo do presente trabalho foi avaliar as imagens da banda L, adquiridas pelo sistema SAR-R99B, quanto à capacidade de distinguir diferentes culturas agrícolas.

2. Área de estudo

A área de estudo, cujas coordenadas geográficas centrais são 11°55'08" sul e 45°49'53" oeste, localiza-se no extremo oeste do estado da Bahia, inserida nos limites municipais de Barreiras, Luis Eduardo Magalhães e Riachão das Neves (**Figura 1**). A área total é de 1.463 km² e caracteriza-se por apresentar solos latossólicos e grandes campos de cultivo, principalmente com as culturas de algodão, café, soja, milho e pastagem. Entretanto, neste trabalho utilizaram-se apenas as culturas do algodão, café e pastagem, pois se encontravam em pleno vigor vegetativo na data de aquisição das imagens o que permite uma melhor avaliação com as imagens SAR. A topografia da região é suave, praticamente plana, apresentando algumas áreas de várzeas.

Figura 1 – Representação da área de estudo inserida nos municípios de Riachão das Neves, Barreiras e Luis Eduardo Magalhães no oeste do estado da Bahia. O retângulo em linha tracejada representa a área coberta pelo sensor SAR-R99B.

3. Matérias e métodos

3.1. Obtenção dos dados e calibração radiométrica das imagens

O sobrevôo da aeronave para aquisição das imagens ocorreu no dia 05 de abril de 2005. Foi utilizado o modo de mapeamento A1 do SAR-R99B com resolução em alcance de 6 m. O ângulo de incidência das imagens variou de aproximadamente 54° a 71°. As imagens foram processadas com 10 *looks* e tamanho de pixel de 5 x 5 m.

A calibração radiométrica das imagens consistiu na correção do padrão da antena e transformação para coeficiente de retroespalhamento ou Sigma 0 σ°). A correção do padrão da antena objetiva corrigir as imagens de acordo com o padrão de ganho do sensor utilizado e reduzir a influência da variação do ângulo de incidência no retroespalhamento dos alvos. Utilizou-se o modelo multiplicativo, por meio de uma função de ajuste obtida a partir de áreas homogêneas da imagem que se estendiam do alcance próximo ao alcance distante (Ulaby et al. 1982).

A conversão das imagens para σ° foi auxiliada pelo retroespalhamento de refletores triédricos de canto (*corner reflector*). Esses refletores foram alocados em campo durante o

imageamento em outro experimento, com o mesmo sensor, no poliduto Urucu/Coari -Terminal Solimões, no estado do Amazonas. Foi possível utilizar as respostas desses refletores porque os parâmetros do sensor e modo de imageamento foram os mesmos nos dois experimentos. Assim, a resposta dos refletores é a mesma para as duas regiões em questão.

Para cada refletor, foi calculado o valor teórico máximo de retroespalhamento normalizado pela área do pixel, de acordo com a Equação 1 (Ulaby et al., 1982). Posteriormente, foi gerado um fator de correção médio (\overline{f}) por meio da Equação 2. A partir do fator médio calculou-se um fator (f_i) específico para cada pixel dentro das linhas da imagem (Equação 3), ou seja, esse fator variou de acordo com o ângulo de incidência. O fator f_i foi utilizado na Equação 4 para a conversão das imagens amplitude em σ° .

$$\sigma_{\max(j)} = \frac{4\pi . (\text{área efetiva do refletor})^2}{\lambda^2 . (\text{área do pixel})}$$
(1)

$$\bar{\mathbf{f}} = \frac{1}{n} \sum_{j=1}^{n} \frac{\sigma_{\max(j)}}{A c \mathbf{r}_{j}}$$
(2)

em que $\sigma_{máx(j)}$ é o valor teórico máximo de retroespalhamento para o j-ésimo refletor de canto; λ é o comprimento de onda utilizado; \overline{f} é o fator de correção médio e Acr_j é o valor de amplitude medido na imagem para o j-ésimo refletor de canto.

$$\mathbf{f}_{i} = \mathbf{f} \quad \mathbf{x} \, \mathrm{sen} \, \boldsymbol{\theta}_{i} \tag{3}$$

em que f_i é o fator de correção aplicado ao i-ésimo pixel da linha, \overline{f} é o fator de correção médio e θ_i é o ângulo de incidência para o i-ésimo pixel na linha.

$$\sigma_{i}^{o} = (20 \log_{10} A_{i}) x f_{i}$$
(4)

em que σ_i^o e A_i são, respectivamente, o coeficiente de retroespalhamento em dB e o valor de retroespalhamento em amplitude para cada pixel da imagem e f_i é o fator de correção para cada pixel.

Figura 2 – (a) Parte da imagem SAR na composição VV(R)HV(G)HH(B). (b) Mapa de referência das culturas, obtido por interpretação de imagem TM/Landsat-5 de 11/04/2005.

Um trabalho de campo foi realizado no mesmo dia da aquisição das imagens SAR. Adquiriram-se informações de alguns campos como tipo, altura e estádio da cultura, direção de plantio, presença de ervas daninhas. Um mapa de referência foi confeccionado com a utilização de imagens do sensor TM do Landsat-5 datada de 11 de abril de 2005. Devido à proximidade das datas, no que tange ao desenvolvimento das culturas, considera-se não haver diferenças significativas nos alvos entre as aquisições das imagens SAR e TM.

Para o registro das imagens utilizou-se o aplicativo específico do ENVI 4.1 e tomou-se como base os mosaicos do sensor ETM+ do Landsat-7 ortorretificados da NASA (GeoCover). A **Figura 2** ilustra uma parte da imagem SAR e o mapa de referência correspondente.

3.2 Metodologia

O cultivo do café, na região de estudo, é realizado tipicamente em áreas irrigadas por pivô central, com linhas de plantio em círculos concêntricos (**Figura 3**). Dessa forma, têm-se linhas que são predominantemente paralelas à direção de visada do sensor (café paralelo) e linhas que são predominantemente perpendiculares à direção de visada (café perpendicular).

Como discutido por Formaggio et al. (2001), a direção das linhas de plantio é um fator importante a influenciar o retroespalhamento. Nesse contexto, realizou-se o teste t para amostras coletadas considerando as duas direções. Verificou-se que, ao nível de significância de 5%, o retroespalhamento médio dos campos difere em função da direção de plantio. Dessa forma, para as análises posteriores a cultura do café foi dividida em duas classes: café perpendicular e café paralelo.

Figura 3 – Imagem SAR, composição VV(R)HV(G)HH(B), com campos de café e ilustração esquemática da influência das linhas de plantio na direção de visada.

Campos representativos das culturas de interesse foram selecionados, sendo 19 campos de algodão, 9 de pastagem, 6 de café perpendicular e 6 de café paralelo. A partir desses campos coletaram-se amostras (valores de pixels) de forma a garantir a condição de aleatoriedade e não correlação espacial entre os pixels.

Geralmente, os dados de imagens SAR não possuem distribuição normal (Oliver e Quegan, 1998). Entretanto, gráficos do tipo *box-plot* e testes estatísticos garantiram a normalidade dos dados ao nível de 5% de significância. Acredita-se que a normalidade foi ocasionada pelo aumento do número de *looks* (Oliver e Quegan, 1998). Assim, assumiu-se que os dados apresentam distribuição normal e adotou-se a média amostral como um estimador para as análises posteriores.

A análise do retroespalhamento médio dos campos foi realizada por meio de análises gráficas e análise de agrupamento para uma polarização e para a combinação de duas e três polarizações. Essa última análise permite particionar um conjunto de dados em grupos relativamente homogêneos, mas com grande variação entre os grupos formados (Hair Jr. et al., 1998). A análise baseia-se em coeficientes de similaridade entre os objetos para posteriormente agrupá-los com o uso de um algoritmo ou método de agrupamento. Os agrupamentos foram realizados no software Statistica 6.0 e como coeficiente de similaridade utilizou-se a distância métrica de Chebychev, que adota como medida a máxima distância

entre dois objetos encontrada em uma das dimensões. O agrupamento pareado proporcionalmente ponderado (*weighted pair-gruoup method*, WPGM) foi o algoritmo utilizado, cuja distância entre dois grupos é calculada como a distância média entre todos os pares de objetos e o número de componentes é utilizado como peso.

Segundo Hair Jr et al. (1998) uma questão importante das técnicas de agrupamento é a definição da distância ótima de corte para a formação dos grupos. Essa decisão envolve além de outros critérios, o conhecimento adquirido a priori pelo usuário. O critério adotado fundamentou-se na identificação de um platô no sentido vertical. Esse platô indica que muitos objetos foram agrupados e que grupos com características diferentes foram agrupados no passo seguinte (**Figura 4**).

Figura 4 – Critério para estabelecimento do ponto ótimo de corte. Identificação de um platô vertical. Polarizações VV, HV e HH.

Os grupos formados foram nomeados de acordo com a predominância de culturas, sendo que, dessa forma, campos de outras culturas podiam encontrar-se erroneamente no referido grupo. Quando mais de um grupo de uma mesma cultura foi gerado, todos foram agrupados, posteriormente, em um único grupo, atingindo novamente as quatro classes iniciais, semelhante a um critério de classificação não supervisionada. Em seguida, os resultados foram avaliados por meio de matriz de confusão e dos índices de Exatidão Global e Kappa.

4. Resultados e discussões

A **Figura 5** ilustra os gráficos com a variação total de σ° médio dos campos para as polarizações individuais HH, HV e HH. Houve sobreposição de valores entre algumas culturas. Para a polarização VV os campos de pastagem apresentaram maior variação, sobrepondo as outras culturas. Entretanto, não houve sobreposição de valores entre algodão e café paralelo e entre café perpendicular e café paralelo.

Para a polarização HV, valores dos campos de pastagem e de café perpendicular não se sobrepuseram. Porém, os campos de algodão apresentaram grande variação, sobrepondo-se em relação a todas as outras classes. Para a polarização HH não houve sobreposição entre os campos de algodão e café perpendicular, entre os campos de pastagem e café paralelo e entre os campos de café paralelo e café perpendicular. A maior dispersão de valores, para essa polarização, foi atribuída à cultura do algodão.

Na polarização VV os campos de café perpendicular apresentaram valores de σ° maiores que os de café paralelo; entretanto, para as polarizações HV e HH esse efeito foi inverso. A cultura do café encontrava-se totalmente desenvolvida com altura entre 2,2 e 2,3 m. O espaçamento entre as linhas de plantio era de aproximadamente 1,3 m, entretanto nas linhas de plantio formou-se um contínuo sem exposição do solo. Como discutido por Simões (2000) e Formaggio et al. (2001), a direção das linhas de plantio dentro do dossel exerce influência na rugosidade do dossel e na interação da radiação de microondas com as culturas. As linhas de plantio perpendiculares expõem maior número de plantas à interação com a radiação além de aumentar a rugosidade do dossel. As plantas de café caracterizam-se por apresentar um caule principal com predominância vertical e galhos com ligeira inclinação. Acredita-se que a baixa freqüência da banda L permitiu a penetração da radiação no dossel, ocorrendo a interação diretamente com o caule. Como afirmado por Brisco e Brown (1998), as polarizações paralelas são dominadas pela interação direta com os alvos com predominância vertical, no caso da VV, e predominância horizontal, no caso da HH. Dessa forma, para a polarização VV o café perpendicular permitiu maior interação com a radiação de microondas.

No espaço entre as linhas de plantio houve o desenvolvimento de ervas daninhas de baixo porte cobrindo o solo. Para o plantio paralelo à direção de visada a exposição de caules no sentido vertical é menor, além disso, há exposição das ervas daninhas, o que pode ter contribuído para a maior interação das polarizações HV e HH em relação à polarização VV.

Figura 5 - Retroespalhamento médio em Sigma 0 (σ°) dos campos de algodão, café perpendicular, café paralelo e pastagem para as três polarizações (a) VV (b) HV (c) HH.

As análises de agrupamento foram expressas por meio de dendogramas. A combinação das polarizações VV, HV e HH produziu o melhor resultado (**Figura 6**). A distância de agrupamento está representada em valores de σ° , dados em dB. A linha tracejada indica a distância ótima de corte. Grupos homogêneos de cada cultura foram gerados, o que evidencia a capacidade dessa combinação de polarizações em distinguir as culturas estudadas.

Figura 6 – Dendograma resultante da análise de agrupamento ao utilizar a combinação das polarizações VV, HV e HH. Grupos formados: algodão (A), café perpendicular (CT), café paralelo (CP) e pastagem (P). A linha tracejada indica a distância de corte.

A matriz de confusão gerada após definir os grupos, para a combinação de polarizações VV, HV e HH está ilustrada no **Quadro 1**. As colunas indicam os erros de inclusão e as linhas os erros de omissão. Houve pouca confusão, sendo que apenas três campos de pastagem foram incluídos na classe café perpendicular. As outras culturas foram separadas sem confusão.

Quadro 1 – Matriz de confusão da análise de agrupamento ao utilizar as polarizações VV, HV e HH. Precisão do Produtor (P.P.), Precisão do Usuário (P.U.) e Exatidão Global (E.G.).

Culturas	Α	Р	СТ	CP	Total	P. P.
Α	19	-	-	-	19	1,00
Р	-	6	3	-	9	0,67
СТ	-	-	6	-	6	1,00
СР	-	-	-	6	6	1,00
Total	19	6	9	6	40	
P. U.	1,00	1,00	0,67	1,00	E.G.	0,925

A **Tabela 1** resume os resultados em ordem decrescente de índice Kappa e Exatidão Global obtidos na análise de agrupamento. O conceito do índice Kappa foi estabelecido segundo Landis e Koch (1977). A combinação das três polarizações e a combinação das polarizações VV e HH receberam o conceito excelente, com índices Kappa 0,890 e 0,853 respectivamente. A única diferença entre as matrizes de confusão dessas duas combinações é que para a combinação de duas polarizações houve um erro de inclusão a mais (incluindo um campo de pastagem como algodão) que a combinação de três polarizações. Ao analisar os dois índices Kappa, segundo o critério estabelecido por Congalton e Green (1999), os dois índices foram considerados estatisticamente iguais ao nível de confiança de 95%, ou seja, não houve diferença estatística entre esses dois resultados.

Polarizações	Ex. Global	Карра	Conceito
HH-HV-HH	0,925	0,890	Excelente
VV-HH	0,900	0,853	Excelente
HH-HV	0,850	0,789	Muito bom
VV	0,825	0,745	Muito bom
VV-HV	0,800	0,712	Muito bom
HH	0,700	0,580	Bom
HV	0,625	0,449	Bom

Tabela 1 – Resultados em ordem decrescente das análises de agrupamento.

Entre as polarizações individuais o melhor resultado foi obtido para a polarização VV, com conceito muito bom. Essa polarização distinguiu corretamente os seis campos de café perpendicular, os seis de café paralelo e também 17 campos de algodão com baixo erro de inclusão. Esse resultado, levando em conta os dois índices, foi melhor que a combinação das polarizações VV e HV, que apresentou muita confusão entre as classes pastagem e algodão.

5. Considerações finais

O estudo demonstrou que as imagens da banda L adquiridas pelo sensor SAR-R99B do SIVAM possuem capacidade para distinguir entre as culturas do algodão, café e pastagem. Os melhores resultados foram encontrados com as combinações de polarizações VV, HV e HH e também VV e HH. Os índices Kappa dessas combinações de polarizações foram considerados excelentes e estatisticamente iguais. Para as polarizações individuais o melhor resultado foi obtido com a polarização VV.

A característica de multipolarização do sensor mostrou-se essencial para a distinção das culturas estudadas. Entretanto, o potencial das imagens não pôde ser completamente explorado nesse trabalho e sugere-se o uso de imagens multitemporais adquiridas ao longo do ciclo das culturas. Um trabalho de campo mais rigoroso, coletando maior número de informações é importante para relacionar e entender mais detalhadamente a interação da radiação de microondas com os alvos agrícolas e a relação existente entre as diferentes lavouras.

Agradecimentos

Ao Dr. Camilo Daleles Rennó pela contribuição e auxilio referentes às análises estatísticas.

Referências Bibliográficas

Brisco, B.; Brown, R.J. Agricultural applications with Radar. In: Henderson, F. M.; Lewis, A. J. **Principles and applications of imaging radar: manual of remote sensing**. (3 ed.). New York: John Wiley & Sons, 1998. cap. 7, p. 381-406.

Congalton, R.G.; Green, K. G. Assessing the accuracy of remotely sensed data: principles and practices. Boca Raton, Florida: Lewis Publishers, 1999. 137 p.

Defesanet: defesa, estratégia e inteligência. **Sistemas do R99B**. 23 set. 2003. Disponível em: http://www.defesanet.com.br/rv/sivam/r99b/>. Acesso em: 30 out. 2006.

Formaggio, A. R.; Epiphanio, J. C. N.; Simões, M. S. Radarsat backscattering from an agricultural scene. **Pesquisa Agropecuária Brasileira**, v. 36, n. 5, p. 823 – 830, maio 2001.

Hair Jr, J. F.; Anderson, R. E.; Tatham, R. L.; Black, W. C. **Multivariate data analysis.** Upper Sanddle River, New Jersey: Prentice Hall, 1998. 742 p.

Ippoliti-Ramilo, G. A.; Epiphanio, J.C.N.; Shimabukuro, Y.E.; Formaggio, A. R. Sensoriamento remoto orbital como meio auxiliar na previsão de safras. **Agricultura em São Paulo**, v. 46, n. 1, p. 89-101, jan. 1999.

Landis, J. R.; Koch, G. G. The measurements of observer agreement for categorical data. **Biometrics**, v. 33, p. 159-174, 1977.

Oliver, C.; Quegan, S. Understanding synthetic aperture radar images. Norwood, MA: Artech House, 1998. 478 p.

Paris, J. F. Radar backscattering properties of corn and soybeans at frequencies of 1.6, 4.75 and 13.3 GHz. **IEEE Transactions on Geoscience and Remote Sensing,** v. GE-21, n. 3, p. 392 – 400, July 1983.

Riedel, T.; Schmullius, C. C. Potencial of future TerraSAR data for crop recognition in agricultural areas. In: Dech el al. (Hrsg.): Tagungsband 20. DFD-Nutzerseminar, 6 – 8 Oktober, 2003. **Proceedings.**....

Rudorff, B. F. T.; Berka, L. M. S.; Moreira, M. A.; Duarte, V.; Xavier, A. C.; ROSA, V. G. C.; Shimabukuro, Y. E. Imagens de satélite no mapeamento e estimativa de área de cana-de-açúcar em São Paulo: ano safra 2003/04. Agricultura em São Paulo, v. 52, n. 1, p. 21-39, jan./jun. 2005.

Simões, M. S. Análise de dados multitemporais Radarsat-1 para o sensoriamento remoto de culturas agrícolas.1999. 147 p. (INPE-7299-TDI/711). Dissertação (Mestrado em Sensoriamento Remoto) – Instituto Nacional de Pesquisas Espaciais, São José dos Campos. 2000.

Stankiewicz, K. A. The efficiency of crop recognition on ENVISAT ASAR images in two growing seasons. **IEEE Transactions on Geoscience and Remote Sensing**, v. 44, n. 4, p. 806 – 814, April 2006.

Tukey, J. W. Exploratory data analysis. Reading, MA: Addison Wesley, 1977, 506 p.

Ulaby, F. T.; Batlivala, P. P.; Janet, E. B. Crop identification with L-band radar. **Photogrammetric Engineering** and **Remote Sensing**, v. 46, n. 1, p. 101 – 105, Jan. 1980.

Ulaby, F.T.; Moore, R.K.; Fung, A. K. **Microwave remote sensing: active e passive**: Radar remote sensing and surface scattering and emission theory. 2 ed. v. 2. Norwood, MA: Artech House, 1982. 1064 p.

Ulaby, F. T.; Moore, R. K.; Fung, A. K. Microwave Remote Sensing: active and passive: From theory to application. 2 ed. v. 3. Norwood, MA. Artech House, 1986. 2162 p.