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Abstract. Geostatistical models for spatial prediction are based on observations points. When ancillary 
information related to the target variable is available, it can be used to improve the estimations. Some sources of 
information, like satellite images or digital elevation models, provide full information for the whole study area, 
improving even more the point estimation. It is useful when the target variable is difficult or expensive to 
sample. Also when is knew the observations contain errors and ancillary information can contribute to estimation 
procedure. The results are maps more realistic, incorporating physical knowledge about the processes under 
study. The aim of this work is to show how incorporate ancillary information derived from remote sensing 
products in spatial prediction model. Here is presented a study case using trends in water table depths as target 
variable and land use classification derived from Landsat image as ancillary information. The results were 
evaluated by cross validation and the use of ancillary information contributed to improve the spatial prediction. 
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1. Introduction 
 

Spatial prediction is the procedure of estimating the values of a target quantity at unvisited 
locations. When applied to a whole study area, it is also referred to as spatial interpolation or 
mapping (Hengel, 2004). Several studies have been made combining remote sensing, GIS, 
statistical analysis, DEM and ancillary information to map vegetation (Dymond et al., 1992; 
Hoersch et al., 2002; Lees & Ritman, 1991; Michaelsen et al., 1994; Moore et al., 1991). Land 
cover classification is one of the principal motivations and successes of satellite remote 
sensing. This classification is obtained by supervised classification from some ground-control 
points. The interest for digital soil mappers is to detect areas of bare soil, or of particular crops 
representing where humans have picked out soil with particular qualities. 

In the 1990s, with emerging GIS and remote sensing technologies, analysts became 
interested to use exhaustively mapped secondary variables to map directly environmental 
variables. The first applications were based on the use of simple linear regression models 
between terrain attribute maps and soil parameters (Moore et al., 1993; Gessler et al., 1995). 
In the next phase, the predictors were extended to spatial prediction by multiple regression 
with auxiliary variables (Odeh et al., 1994, 1995) or a set of environmental variables and 
remote sensing images (McKenzie & Ryan, 1999). In the last decade, many ‘hybrid’ 
interpolation techniques, which combine kriging and use of auxiliary information, has been 
developed and tested. A spatial prediction technique, which jointly employs correlation with 
auxiliary maps and spatial correlation is universal kriging (UK), originally described by 
Matheron (1969). Other variants of UK are Kriging with External Drift (KED) and 
Regression Kriging (RK). In fact, UK, KED and RK are equivalent methods and should, 
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under the same assumptions, yield the same predictions. Many authors (Deutsch & Journel, 
1992; Wackernagel, 1995), however, agree the term UK should be reserved for the case where 
the drift (or trend) is modeled as a function of the coordinates only. In several studies (Odeh 
et al., 1994, 1995; Goovaerts, 1999; Bishop & McBratney, 2001, Hengel et al., 2004), 
combination of kriging and correlation with auxiliary data outperformed ordinary kriging, co-
kriging and plain regression. 

The aim of this study is to show how incorporate ancillary information derived from 
remote sensing products in spatial prediction model. Here are presented a study case using 
linear trends in water table depths as target variable and land use classification derived from 
satellite image as ancillary information. 

 
2. Materials e Methods 
 

2.1. Study area 
The Jardim River watershed is a representative Cerrado area in the eastern part of the 
Brazilian D.C., latitudes 15o40’S and 16o02’S and longitudes 47o20’W and 47o40’W. The dry 
and the wet season are well-defined, with the rain concentrated between October and April. 
During the past years, almost all natural vegetation present in this area was replaced by 
agricultural crops, and the use of irrigation systems has substantially increased in this region 
during the past years. The main cultivations present in this area are soybeans, cotton and corn 
crops, as well as pasture and horticultural crops. 

To monitor the water table depths, 40 wells were drilled in the area. The locations were 
selected purposively, to cover the range of soil types in the area (Lousada, 2005). The water 
table was observed semimonthly from October 2003 until August 2006, resulting in series of 
70 more or less regularly spaced semi-monthly observations. Series of precipitation and 
potential evapotranspiration were available from a climate station close to the basin, from 
1974 until 1996 with a monthly frequency, and from 1996 until August 2006 with a daily 
frequency. Figure 1 shows a map of the study area and the well locations. 

Ancillary information related to the sources of systematic changes was derived from 
Landsat images. An image from July 23, 2005, orbit/point 221/71, was classified for the 
actual land use in the region. The image classification results in a land use surface, divided in 
three classes: Agricultural Crops, Pasture and Cerrado. This classification was created based 
on expert knowledge and manual delineation of the classes. The class Agricultural Crops 
includes all kinds of agricultural products cultivated in the area: small areas cultivated with 
horticultural products, such as carrots, lettuce, tomatoes, and big areas cultivated with 
products such as corn, soybeans, cotton, coffee, sugarcane. All these crops demand more 
water than the original vegetation. The agricultural activities are intensive, resulting in three 
production cycles during one year when irrigation is applied. Also, the land use in the class 
Agricultural Crops is very dynamic because of agronomical recommendations, rotation 
schemes or simply prices. The class Pasture is considered to be less water demanding than 
Agricultural Crops, but more demanding than the natural Cerrado vegetation. These areas are 
not as dynamic in land use changes as the Agricultural Crops. Figure 1 gives the classified 
land use map. 
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Figure 1: Jardim River watershed and location of the observation wells (+) (right) and the Image 

classification for actual land use (left). 

The land use map shown in Figure 1 has sharp boundaries. For hydrological studies, this 
does not make sense because water levels do not have abrupt variations related to land use. 
Therefore, the land use map was smoothed by computing the average presence of land use 
within a window with 500m radius. The choice of radius was based on expert knowledge and 
chosen after several tests. 

2.2. The PIRFICT-model 

The PIRFICT-model, introduced by Von Asmuth et al. (2002), was applied in this study 
because the model can describe a wide range of response times with differences in sampling 
frequency between input series and output series. Being the most important driving forces of 
water table fluctuation, precipitation and evapotranspiration are incorporated as exogenous 
variables into the model. Besides precipitation and evapotranspiration, a linear trend 
component is incorporated to model systematic changes in the water table system. It is an 
alternative to discrete-time TFN models. In the PIRFICT-model a block pulse of the input is 
transformed into an output series by a continuous-time transfer function. The coefficients of 
this function do not depend on the observation frequency. The following single input 
continuous TFN model can be used to model the relationship between water table dynamics 
and precipitation surplus/deficit. Manzione et al. (2006) give more details about developing 
the PIRFICT-model and its application in the Cerrado area. 

2.3. Regionalizing the linear trend parameter of the time series model 

PIRFICT-models were calibrated to the 40 series of water table depths, using the program 
Menyanthes. Next, the trend parameters reflecting systematic changes of water table depths 
were mapped. We followed the hypothesis the actual land use can lead to systematic changes 
in water table depths. The trend parameter of the PIRFICT-model was interpolated spatially 
using universal kriging. This works as follows. Let the ‘observed’ trend parameters be 
denoted as z(x1), z(x2), …, z(xn), where xi is a (two-dimensional) well location and n is the 
number of observations (i.e., n=40). At a new unvisited location x0 in the area, z(x0) is 
predicted by summing the predicted drift and the interpolated residual (Odeh et al., 1994; 
Hengl et al., 2004): 
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where the drift m is fitted by linear regression analysis, and the residuals e are interpolated 
using kriging:  
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Here, the �k are estimated drift model coefficients, qk(x0) is the kth external explanatory 

variable (predictor) at location x0, p is the number of predictors, wi(x0) are the kriging weights 
and e(xi) are the zero-mean regression residuals. 

The general universal kriging technique was used to interpolate the linear trend parameter 
(LTP) of the PIRFICT model. The Land Use (LU) map was used as predictor. The model was 
formulated as follows: 

 
)()(3)(2)(1)( 003020100 xexLUxLUxLUxLTP +⋅+⋅+⋅+= ββββ  (3) 

 
where LU1 is land use class 1 (Agricultural Crops), LU2 is land use class 2 (Pasture), LU3 is 
land use class 3 (Cerrado Vegetation) and e is a zero-mean spatially correlated residual. The 
semivariogram characterizes the spatial correlation structure. The geostatistical package 
GSTAT (Pebesma, 2004) was used in these analyzes. 
 
3. Results e discussion 
 

Including the land use variables into the geostatistical model caused a decrease in the 
semivariance. Here is compared the semivariogram for LTP with and without inclusion of LU 
as ancillary information in the spatial model (Figure 2). 
 

 

Figure 2: Semivariograms fitted for the linear trend parameter without including a trend that depends on 
land use (right) and with including a trend (left). 

The spatial dependence at small distances is poorly estimated because of the small 
number of observation wells that are fairly uniformly spread across the area. The nugget 
parameter of the semivariogram reflects the precision of the LTP and the short-distance spatial 
variation in LTP. The variance at small distances increase including LU variables in the model 
because we are including more sources of uncertainty in the estimation. These sources of 
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uncertainty come from errors at observations and misclassification of the satellite image. The 
criteria adopted to incorporate LU information was first the relationship between actual land 
use and the LTP. The regression model presented a R2=0,37. This poor relationship indicated 
that other variables are responsible for eventual changes in water table depths, not included in 
this analysis. So, we investigated if the variance of the model is reduced including LU 
variables. The sill of the semivariograms revealed a small decrease in the variance including 
LU variables, what convinced us to use it in estimation of systematic changes in water table 
depths. 

These semivariograms presented on the Figure 2 were used to perform ordinary kriging 
and universal kriging. Ordinary kriging consider only the LTP calibrated from PIRFICT-
model (Figure 3) and universal kriging include LU variables as ancillary information (Figure 
4). Positive values in the interpolated map of systematic changes in water table depth indicate 
a rise of the water table during the last three years, and negative values lowering. The map of 
the kriging standard deviations reflects the accuracy of the predicted systematic changes of 
water table depth. The large standard deviations reflect the large uncertainty in the LTP 
parameters which were estimated from relatively short time series. The large uncertainty 
implies that observed lowerings and risings of the water table depth may not be statistically 
significant.  

 

 
 

Figure 3: Systematic changes of the water table depths (m) during the period from October 2003 to August 
2006 (Left), and the corresponding ordinary kriging standard deviations (Right). 
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Figure 4: Systematic changes of the water table depths (m) during the period from October 2003 to August 
2006 (Left), and the corresponding universal kriging standard deviations (Right). 

The results of the ordinary and universal kriging were evaluated by cross-validation. 
Table 1 gives the results for ordinary kriging and Table 2 gives the results for universal 
kriging. 

Table 1: Cross-validation for the spatial interpolation of  LTP using ordinary kriging. 

 Observed Predicted Pred. – Obs. Pred. SD Z-score 

Min -3.3 -0.7568 -2.86 0.9801 -2.214 
1st Q -0.08762 0.1829 -0.8409 1.064 -0.7972 

Median 0.6235 0.744 -0.05554 1.108 -0.05244 
3rd Q 1.408 1.054 0.5291 1.179 0.4711 
Max 3.63 2.09 4.061 1.332 3.729 
Mean 0.6877 0.6404 -0.04728 1.13 -0.01864 
SD 1.376 0.662 1.283 0.09335 1.13 

Pred.=Predicted; Obs.=Observed; Min=Minimum; 1st Q=First quantil; 3rd 
Q=Third quantil; Max=Maximum; SD=Standard deviation; Z-score=(Pred-
Obs) / Kriging variance. 

 

The cross-validation results indicate large interpolation errors, because the standard 
deviation of the prediction errors is only a bit smaller than that of the observations 
themselves. These errors can be explained from the uncertainty about the LTP parameters at 
the 40 well locations, the poor relationship between land use and LTP and the poor spatial 
correlation structure in the stochastic residual of the kriging models. Comparing both 
interpolation methods, the mean standard deviation of universal kriging is a smaller than 
ordinary kriging. It confirms the choice for the model including LU variables to explain the 
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spatial distribution of systematic changes in water table depths in Jardim River watershed.The 
Z-score mean and standard deviation of the Z-score indicate a good performance of the 
kriging systems, with values close to zero and one, respectively. 

 

Table 2: Cross-validation for the spatial interpolation of  LTP using universal kriging. 

 Observed Predicted Pred. – Obs. Pred. SD Z-score 

Min -3.3 -0.8321 -2.988 0.9632 -2.4 
1st Q -0.08762 0.2526 -0.8921 1.059 -0.7134 

Median 0.6235 0.7263 -0.08821 1.111 -0.0744 
3rd Q 1.408 1.02 0.837 1.174 0.7784 
Max 3.63 2.661 3.899 1.321 3.641 
Mean 0.6877 0.661 -0.02672 1.12 -0.00976 
SD 1.376 0.734 1.301 0.09012 1.161 

Pred.=Predicted; Obs.=Observed; Min=Minimum; 1st Q=First quantil; 3rd 
Q=Third quantil; Max=Maximum; SD=Standard deviation; Z-score=(Pred-
Obs) / Kriging variance. 
 

The map on Figure 4 shows a large area near the river where systematic lowering occurs. 
These areas are covered with traditional agricultural crops, using irrigation systems that catch 
water directly from the river (surface water). Also, this region has a barrier to stop the river 
flow and to create a water reservoir for the irrigation systems. For some areas systematic 
rising of the water table depths was estimated. These risings can be explained as follows. The 
years 2001, 2002 and 2003 were very dry with 24.4, 41.02 and 33.2% less rainfall than the 
annual average over the last 31 years, respectively. During 2004 and 2005, rainfall was 8.54 
and 4.6% larger than the annual average of the last 31 years, respectively. Therefore, the 
groundwater system could recharge during the latter period in some areas, resulting in rising 
water tables.  

In the northern part of the basin some areas are found where the Cerrado vegetation still 
remains, and where systematic risings are indicated. These locations have shallow soils, with 
slightly fluctuating water tables close to the ground surface. The contribution of this 
subsystem to the groundwater system of the Jardim river watershed is restricted (Lousada, 
2005). The same is true for the area with risings in the eastern part of the basin, which belongs 
to the same geological system. The degradation of the Cerrado vegetation in these areas could 
also be a reason of systematic rising of the water table depths, because the degradated 
vegetation does not use all the water volume that could be explored by the original biomass.  
 
4. Conclusions 
 

The inclusion of satellite images on trends in water table depths estimation reduced the 
variance of the spatial prediction model. The procedure presents maps more realistic because 
some physical knowledge about the hydrological process could be incorporated in the 
analyses. 
 
5. Acknowledgements 
 

CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) enabled this study 
by a scholarship and financial support. We are grateful to Dr. Suzana Druck from EMBRAPA 
(Empresa Brasileira de Pesquisa Agropecuária) to allow the use of this data base 
(PRODETAB Project). Also, we are grateful to Kiwa Water Research for the use of the 

3443



  

program Menyanthes on time series analysis, and Jos Von Asmuth (Kiwa Water Research) for 
his advices. 
 
6. References 
 

Bishop, T.; McBratney, A. A comparison of prediction methods for the creation of field-extent soil property 
maps. Geoderma, v. 103, p. 149–160, 2001. 
 

Deutsch, C.; Journel, A. G. Geostatistical Software Library and User’s Guide. New York: Oxford University 
Press, 1992. 369 p. 
 

Dymond, J. R.; Stephens, P. R.; Newsome, P. F.; Wilde, R. H. Percent vegetation cover of a degrading rangeland 
from SPOT. International Journal of Remote Sensing, v. 13, p. 1999– 2007, 1992. 
 

Gessler, P.; Moore, I.; McKenzie, N.; Ryan, P. Soil-landscape modelling and spatial prediction of soil attributes. 
International Journal of Geographical Information Systems, v. 9, n. 4, p. 421– 432, 1995. 
 

Goovaerts, P. Using elevation to aid the geostatistical mapping of rainfall erosivity. Catena, V. 34, p. 227– 242, 
1999. 
 

Hoersch, B.; Braun, G.; Schmidt, U. Relation between landform and vegetation in alpine regions of Wallis, 
Switzerland. A multiscale remote sensing and GIS approach. Computers, Environment and Urban Systems, 
v. 26, p. 113– 139, 2002. 
 

Lees, B. G.; Ritman, K. Decision-tree and rule-induction approach to integration of remotely sensed and GIS 
data in mapping vegetation in disturbed or hilly environments. Environmental Management, v. 15, p. 823–831, 
1991. 
 

Lousada, E. O. Estudos hidrológicos e isotópicos no Distrito Federal: Modelos conceituais de fluxo. 2005. 
127 p. PhD Thesis - University of Brasília, Brasília. 2005. 
 

Manzione, R. L.; Knotters, M.; Heuvelink, G. M.B. Mapping trends in water table depths in a brazilian cerrado 
area. In: Caetano, M. & Painho, M.(Eds.), Procedings of Accuracy 2006. Lisboa: Instituto Geográfico 
Português, 2006, p. 449-458. 
 

Matheron, G. Le krigeage universel. Cachiers du Centre de Morphologie Mathematique, v. 1. 
Fontainebleau: Ecole des Mines de Paris, 1969. 83 p. 
 

McKenzie, N.; Ryan, P. Spatial prediction of soil properties using environmental correlation. Geoderma, v. 89, 
p. 67–94, 1999. 
 

Michaelsen, J.; Schimel, D. S.; Friedl, M. A.; Davis, F. W.; Dubayah, R. C. Regression tree analysis of satellite 
and terrain data to guide vegetation sampling and surveys. Journal of Vegetation Science, v. 5, p. 673– 686, 
1994. 
 

Moore, D. M.; Lees, B. G.; Davey, S. M. A new method for predicting vegetation distributions using decision 
tree analysis in a geographic information system. Environmental Management, v. 15, p. 59– 71, 1991. 
 

Moore, I.; Gessler, P.; Nielsen, G.; Peterson, G. Soil attribute prediction using terrain analysis. Soil Science 
Society of America Journal, v. 57, p. 443– 452, 1993. 
 

Odeh, I.; McBratney, A.; Chittleborough, D. Spatial prediction of soil properties from landform attributes 
derived from a digital elevation model. Geoderma, v. 63, p. 197– 214, 1994. 
 

Odeh, I.; McBratney, A.; Chittleborough, D. Further results on prediction of soil properties from terrain 
attributes: heterotopic cokriging and regression-kriging. Geoderma, v. 67, p. 215– 226, 1995. 
 

Pebesma, E. J. Multivariate geostatistics in S: the gstat package. Computer & Geosciences, v. 30, p. 683-691, 
2004. 
 

Von Asmuth, J. R.; Bierkens, M. F. P.; Maas, C. Transfer function noise modeling in continuous time using 
predefined impulse response functions. Water Resources Research, v. 38 (12), p. 23.1-23.12, 2002. 
 

Wackernagel, H. Multivariate geostatistics: an introduction with applications. Berlin: Springer, 1995. 256 p. 

3444


	proximo artigo: 
	artigo_prox_txt: próximo artigo
	artigo anterior: 
	artigo_ant_txt: artigo anterior
	indice_txt: sumário
	sumário: 
	cb: Anais XIII Simpósio Brasileiro de Sensoriamento Remoto, Florianópolis, Brasil, 21-26 abril 2007, INPE, p. 3437-3444.


