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Abstract. This paper presents a successful approach for GIS database quality control, called WiPKA-QS, 

applied for the verification of different Brazilian GIS datasets. The knowledge-based system 

GeoAIDA/InterIMAGE was used to perform this analysis. Two different experiments were implemented: one 

aiming at identifying changes on a road network, and the other, at identifying land-cover changes in the State of 

Rio de Janeiro. The architecture, main features as well as an overview of the interpretation strategy implemented 

in the GeoAIDA/InterIMAGE platform is presented, as well as the explicit knowledge, interpretation model 

defined for each experiment. Specific operators were used to identify relevant features used on the verification 

process. The knowledge model implemented in each experiment was defined in such a way that the consistency 

of the GIS input data could be confirmed or questioned, depending on the features extracted from the input 

images. Using that information, much of the time spent by a human specialist to update GIS data can be saved, 

because only the geodata likely to have changed need be verified. The results obtained in the experiments show 

the potential of this approach.  
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1. Introduction 

Remote sensing technology delivers the most important subsidies for the identification 

and monitoring of change on the surface of the Earth, effectively supporting the investigation 

of the interactions among the environment and agricultural or urban planning activities 

(Ehlers et al. 2002).  

Presently, however, the lack of efficient automatic image interpretation tools makes it 

difficult to achieve the goals of many land cover monitoring applications. The large amount of 

time spent from the acquisition of an image to its classification results in insufficient time to 

substantiate critical decisions that may avoid or diminish the effects of environmental 

degradation or unplanned urban expansion. A specific aspect of the problem has to do with 

the large time spent on the update of GIS data, usually performed manually by specialized 

photo-interpreters. 

Although there is already a relatively small number of commercial software for automatic 
or semi-automatic image interpretation, currently most remote sensing data analysis 

techniques require intense human intervention. Even when such analysis is performed with 

the aid of software tools, the automatically delivered results usually require careful scrutiny 

by a human specialist for the identification and rectification of inconsistencies (Bückner et. al 

2002). There is, consequently, a strong demand for the development of robust techniques for 

automatic information extraction and interpretation of remote sensing data (Carrion et. al 

2002). 
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 A rather successful approach for automatic image interpretation is based on the explicit 

modeling, on a high level computational environment, of the human interpreter’s knowledge 

concerning the interpretation problem (Bückner et al. 2002; Schiewe et al. 2001). Human 

expert’s knowledge is organized in a knowledge base, used as an input of the automated 

interpretation processes – enhancing the productivity and accuracy and reducing the 

subjectivity of the interpretation process. 

In many applications the interpretation process of remote sensing data benefits from GIS 

technology, often used in the definition public policies related to urban and environmental 

planning. Together with up-to-date remote sensing imagery, GIS data can be used in large 

scale for monitoring of different environmental issues, such as forest devastation, and non-

planned urban expansion. The WiPKA-QS project has already successfully implemented this 

approach for GIS data update using high-resolution imagery of Germany.  

In this paper we present the results of applying the WiPKA-QS approach to verify GIS 

data using imagery of the State of Rio de Janeiro, Brazil. Two different experiments were 

performed: one aims at identifying changes in land-use maps, and the other, at identifying 

changes in a road network.  

The architecture and most relevant features of the knowledge-based image interpretation 

system used in the experiments are presented, as well as the knowledge models designed for 

each experiment. The specific operators used for road extraction and classification, and 

texture analysis for land-cover detection are also presented. 

In the remainder of this paper we describe the WiPKA-QS project (Section 2). The basic 

characteristics of the GeoAIDA/InterIMAGE Framework are presented in Section 3. The 

operators used in the experiments performed are described in Section 4, and in Section 5, the 

experiments’ results, followed by the conclusions and directions for future work, in Section 6. 

 

2. WiPKA-QS Description 

The WiPKA-QS Project, initiated in the year 2000, aims at the automated verification of 

the German topographic reference dataset ATKIS
1
. ATKIS is a trademark of the Working 

Committee of the Surveying Authorities of the States of the Federal Republic of Germany 

(AdV). The dataset has a geometric accuracy of 3m. 

The project WiPKA-QS was initiated by the German Federal Agency for Cartography 

and Geodesy (BKG) together with the Institute of Photogrammetry und GeoInformation (IPI) 

and the Institute of Information Processing (TNT), both at the Leibniz Universität Hannover. 

The first version of WiPKA-QS was installed at BKG in 2003 (Busch et al. 2004). Since 2003 

the system has been permanently enhanced. In this section the workflow of WiPKA-QS is 

described.  

In WiPKA-QS, GIS data is automatically verified by comparing them with the real  

world – in terms of remote sensing imagery. Currently, in the BKG application, pan-

sharpened IKONOS data consisting of orthorectified images with a red, blue, green and 

infrared channel with a resolution of 1m is utilized. In the experiments reported later in this 

paper, data of lower spatial resolution is used: ALOS imagery with 10m resolution and 

LADSAT imagery with 30m resolution. 

The WiPKA-QS system consists of two components – an interactive GIS component and 

an automated knowledge-based image analysis component. Furthermore, the interactive GIS 

component is divided into a pre-processing step and a post-processing step, respectively 

before and after the image analysis component. 

                                                 
1
 Amtlich Topographisch-Kartographisches Informationssystem (Authoritative Topographic Cartographic 

Information System). 
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First of all, in the pre-processing step, the necessary sources for the verification system 

are defined. These are the GIS dataset, corresponding remote sensing imagery, and a semantic 

network that corresponds to the knowledge model for image analysis application. 

In the automated knowledge-based image analysis component, the verification system 

compares the GIS objects of interest with the image data, in order to collect evidence for the 

acceptance or rejection of these objects. The GIS objects of interest for the BKG application 

are objects which cover large areas (e.g. settlement, industrial area, cropland, pasture and 

forest) or objects where many changes may arise (like roads). The workflow of WiPKA-QS is 

sketched in Figure 1. 

Currently, the verification of GIS is still far away from being carried out completely 

automatically. Therefore, the final decision about the rejection of objects is made by a human 

operator - an interactive post-processing step is necessary. The results of the automatic 

procedures are passed to the human operator in the form of a traffic light diagnostics. 

Rejected objects (red) are visualized for further editing, whereas it is not necessary for the 

human operator to take a look at accepted (green) objects. 

 

 

Figure 1. Workflow of WiPKA-QS 

 

3. Knowledge-Based Image Analysis Component  

The core of the automated procedures in the image analysis component of WiPKA-QS is 

the knowledge-based image interpretation system GeoAIDA (Bückner et al. 2002) and 

various methods for feature extraction. 

GeoAIDA has been developed at the TNT Institute of the Leibniz Hannover University, 

Germany. Its interpretation engine is currently being extended through the InterIMAGE 

Project, leaded by the Computer Vision Lab of the Catholic University of Rio de Janeiro 

(PUC-Rio) and by the Brazilian Space Research Institute (INPE). As a work in progress, a 

new graphical user interface, knowledge extraction functionality and image processing 

operators are planned to be included in InterIMAGE in the near future. 

 

3.1 Interpretation Strategy 

In GeoAIDA/InterIMAGE explicit knowledge about the objects expected to be found in a 

scene is structured in a semantic network, defined by the user through the system’s graphic 

user interface (GUI). 

A semantic network contains nodes and edges, whereat nodes represent concepts and 

edges represent the relations between the concepts. In each concept node, information 

necessary for the analysis, such as the image processing operator specialized in the search of 

occurrences of the concept, is defined. During the analysis, guided by the semantic network, 

the system controls the execution of the operators and generates a network of instances, each 

instance defining a geographic region associated to a specific concept. 
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Interpretation of remote sensing data means to transform input data into a structural and 

pictorial description that represents the result of the analysis. In GeoAIDA/InterIMAGE, the 

result of the interpretation contains a structural description of the result (an instance network) 

and thematic maps. The final and all intermediate results, in terms of region descriptions, are 

stored in XML format, and can be used for further external examinations. 

The analysis process performed by GeoAIDA/InterIMAGE has two steps: a bottom-up 

step and a top-down step. The top-down step is model driven and generates a network of 

hypothesis based on the semantic network. The grouping of hypothesis and their verification 

or falsification is a task of the data driven bottom-up analysis. The final instance network 

results from the bottom-up analysis. 

In each network node the user defines the information necessary for the execution of each 

processing step, that is, the image processing operator and respective parameters to be used in 

the top-down step (top-down operator), and the decision rules to be used in the bottom-up 

step. 

The top-down operators have the task of creating concept hypotheses, defining regions on 

the image associated to the concepts of the semantic network. This task is performed 

recursively from the upper to the lower nodes. For this purpose any (external) classifying 

operator can be used in the analysis process. The regions hypotheses can be defined by means 

of consistency measurements. If the contemplation of texture, for instance, allows only a few 

possible hypotheses for a particular region, no further investigation of other concept 

hypotheses is performed for that region. 

When the top-down analysis reaches the leaf nodes, analysis changes from model-driven 

interpretation to data-driven interpretation (bottom-up). The decision rules for the bottom-up 

step are defined in a particular stack based language that provides functions for deciding 

between spatially concurrent hypotheses generated in the top-down step. 

 

4. Image-Analysis Operators 

The core of every automated procedure is based on image analysis algorithms. In this 

section we discuss operators for the verification of line objects (e.g. roads) as well as 

polygonal objects (e.g. urban, forest, field and bare soil), used in the experiments reported in 

Section 5. 

 

4.1. Road Verification Module 

The road verification module is designed to check the existence and positional accuracy 

of roads from a given GIS database. Two special operators are used for the task. The first 

operator extracts relevant information from the image; the second operator compares the 

extraction result with the database. Both operators will be described in the following sections. 

 

4.1.2. Road Extraction Operator 

The operator is based on the road extraction algorithm, presented in (Wiedemann and 

Ebner 2000), which models roads as linear objects in single channel imagery with a resolution 

of 1 to 2m. The underlying line extractor is introduced in (Steger 1998). The approach is 

restricted to the open landscape area since a homogeneous surrounding of the road is a 

precondition. The initially extracted lines are evaluated through fuzzy rules concerning their 

attributes, such as length, straightness, constancy in width and in grey value. Final step is the 

grouping of the individual lines in order to derive topologically connected and geometrically 

optimal paths. The decision whether extracted and evaluated lines are grouped into one road 

object is based on a collinearity criterion, allowing for a maximum gap length and a 

maximum direction difference. 
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Figure  2. Road verification process: a) imagery and GIS road data; b) Generated buffer 

for the single road object; c) Result of the line extraction algorithm; d) Traffic light decision 

for the GIS road data. 
 

The line-based road extraction algorithm is executed for each road object individually. 

Thus, in each case a region of interest is defined, depending on the geometric description from 

the database. More precisely, a buffer around the vector representing the road axis is defined, 

and the buffer width complies with the overall requested geometric accuracy of the GIS and 

the road width attribute in the database. If the width value fails a plausibility test or is not 

available at all, a predefined value is taken. Subsequently, the road extraction algorithm is 

executed with appropriate parameter settings in the image domain of the buffer. The 

geometric and radiometric parameters are initially selected based on the knowledge about the 

given context region. Varying contrast situations, based on differences in the illumination of 

the imagery, are compensated by an automatic parameter training module. This training 

module is executed independently from the road extraction operator. Hence, the module 

refines the radiometric properties from the existing GIS road network in the respective scene. 

Based on the assumption that the majority of the GIS roads are correct, a rank filter is used to 

avoid inadequate parameter settings, which are refined from incorrect roads (Ziems et al. 

2007). Consequently, the extraction algorithm is processed with a scene, context and object 

dependent parameter selection. Figure 2 depicts the main extraction process. 

 

4.1.3. Road Verification Operator 

The road verification operator is designed to check if the roads from the database keep a 

predefined positional accuracy as well as to detect commission errors (a road from the 

database does not exist in the reference image). The road verification operator compares 

geometry, shape and attributes of the corresponding road objects. If the calculated evidence 

for the correctness of the database road is high enough, the GIS information is assumed to be 

correct, i.e. it is accepted, and otherwise it is rejected and marked for manual checking. For 

the assessment topological relations to other extracted objects, e.g. local context objects like 

rows of trees or shadowed areas can be considered too. A geometric-topologic relationship 

model allows combining evidences from different extraction methods. For further information 

concerning the verification operator refer to Gerke (2006).  

In order to exploit the connection character of roads, the presented procedure is embedded 

in a two-stage graph-based approach, which leads to a reduction of false alarms in the 

verification. In the first phase, the road extraction is applied using a strict parameter control, 

leading to a relatively low degree of false-positive road extraction, but also a high number of 

roads will be rejected, although being correct. For the second phase, the latter objects are 

examined regarding their connection function inside the road network. It is assumed that 

accepted roads from the first phase are connected via a shortest path in the network. All 

rejected roads from the first phase fulfilling important network connection tasks are checked 

again in a second phase, but with a more tolerant parameter setting for the road extraction 

operator. Consequently, the verification operator takes global information of the whole road 

network into account while the extraction operator is restricted to a single road object.  
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4.2 Textural Analysis Operator 

The textural analysis uses a segmentation algorithm initially described in Gimel’farb 

(1996), and later extended to use a multiresolution technique to segment images. This 

classification algorithm has to learn the properties of the classes with manually created 

training regions for the classes.  

The learning steps are: (a) learning of texture with the training areas in four subsampling 

resolution levels resulting in four parameter files; (b) segmentation of the input image in all 

resolution levels based on the parameter files; (c) evaluation of the segmentation for each 

class in all resolutions; and (d) calculation of an evaluation matrix. 

As a result of the learning process, four parameter files and an evaluation matrix are 

derived. The texture analysis operator begins with the lowest resolution and processes the 

higher resolutions level by level. It uses the parameters derived from the training areas.  

The steps of the top-down texture operator are: (a) analysis of the input image in all 

resolution levels using the parameter files; (b) calculation of a resulting segmentation using 

the segmentations in the different resolution levels and the evaluation matrix. 

The learning step determines the resolution level on which a class gains significant 

signatures. From the evaluation matrix, we derive in which resolution level a texture can be 

differentiated. The resolution with the best separation characteristics may differ from one 

class to another. The classification of inhabited areas is, for example, significantly better in 

the lower resolutions and therefore preferably used. 

The learning step is a crucial part for the effectiveness and correctness of the derived 

results. This step is preferably done by a human operator, who manually defines training areas 

for the desired classes by use of a developed training tool. The automatic generation of 

training areas by the use of GIS data is also possible. The training areas for the desired classes 

can be taken from the regions of a GIS and be used to train the classifier. This has to be done 

for a few areas, whereas the resulting classification definitions can be used for similar images, 

e.g. the complete set of images of a flight. Since the fully automatic derivation of training 

areas sometimes leads to training areas containing a mixture of classes, the separability of the 

classes is not as good as it is with manually defined areas. 

 

5. Experiments and Results 

 Two different experiments, using Brazilian GIS databases were carried out in this work: 

one to verify road changes, form a database produced by IBGE (Brazilian National 

Geography and Statistics Institute), and the other to verify land-cover changes in GIS data, 

from a database of the IPP (Pereira Passos Municipal Urban Institute, an agency from the Rio 

de Janeiro City Administration). Both GIS datasets cover areas inside the State of Rio the 

Janeiro, and they are at least two years older than the images used in the verification process. 

 

5.1. Road Verification 
 The goal of the first experiment was to detect road changes in a given GIS dataset using 

ALOS imagery with 10m resolution. Only the spectral bands from the visible part of the 

electromagnetic spectrum were used. The GIS data covered a biological reserve area, in the 

northwest of Rio de Janeiro State. 

The semantic network was designed so as to detect different types of roads, with different 

widths. A top-down operator, with the functionality described in Section 4.1.1, was attached 

to each leaf node of the network. The generated road hypotheses were subsequently compared 

with the input GIS data, at the bottom-up interpretation step, through the procedure described 

in Section 4.1.2.  
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 If a GIS road can be validated by a set of hypotheses, a flag associated to the road object 

is set to signalize that the GIS road is unchanged. If the validation procedure result is 

inconclusive, the system will set a flag that indicates a change occurred, and that the GIS road 

could not be detected (inconclusively).  

 In Figure 3 the results obtained for road verification on the IBGE’s dataset are depicted, 

for a small area within the study region. It is possible to observe that some roads could not be 

verified due to the resolution of the available imagery, which was too low (10m) to identify 

properly small roads. 
 

   

Figure 3: Road verification experiment: rejected GIS road data (right); input image (center); 

accepted GIS road data (left). 

 

5.2 Land-cover usage verification 
The goal of the second experiment was to detect land-cover changes in a GIS dataset, 

using LANDSAT imagery (30m resolution). The semantic network was designed so as to 

detect four different types of land-cover classes: urban (red), field (light green), forest (dark 

green) and bare soil (yellow). Only the spectral bands from the visible part of the 

electromagnetic spectrum were used.    

Each land-cover polygon from the GIS dataset was initially defined as a hypothesis of the 

corresponding land-cover class. The multi-resolution texture analysis top-down operator 

(Section 4.2) was then called to process the image segment within the original polygon, trying 

to find hypotheses of any land-cover class. Subsequently, in the bottom-up step, a decision 

rule is used to judge the original hypothesis based on the ratio of the land-cover classes 

automatically found within the original polygon. If less than a certain percentage of the 

original hypothesis area (as defined in the GIS database) is covered by the original land-cover 

class (as detected automatically by the top-down operator), a flag associated to the original 

land cover polygon is set, indicating that its class has probably changed. 
Figure 4 shows the results obtained for a small area within the study region. 

 

   

Figure 4: Land-cover verification experiment: original GIS land-cover data (right); input 

image (center); textural analysis result – urban: red; field: light green; forest: dark green; and 

bare soil: beige (left). 
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6. Conclusions 

This paper presented a successful approach for GIS database quality control, called 

WiPKA-QS, applied for the verification of different Brazilian GIS datasets.  

Experimental results demonstrate the potential of WIPKA-QS to update Brazilian GIS 

datasets. In the road verification experiment the main roads could be properly verified, but 

some of the small roads could not detect automatically due to the resolution of the imagery 

used.  

In the land-cover verification experiment, which was based on textural analysis, the 

devised application was successful in finding the correct land use classes and validating the 

GIS dataset. Some errors, though, were observed in transition regions, such as sparsely 

populated areas, where most confusion between the field and urban classes occurred.  

 This quality control approach can save much of the time spent with the updating process 

of GIS data, usually performed manually, by trained specialists. The specialists can focus on 

the objects rejected from system; saving most of the time spend on visual verification of the 

whole data set. In this way, the experiments performed indicate a promising approach for 

semi-automatic GIS data update. 

 For the continuation of this work, we are considering to execute the experiments with 

higher resolution imagery (from the IKONOS or Quickbird sensor systems). In the case of the 

land-cover update application, we are also considering a running the experiments on a dataset 

with a larger number of classes. 
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