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Abstract. Images obtained with coherent illumination, as is the case of sonar, ultrasound-B, laser and Synthetic

Aperture Radar – SAR, are affected by speckle noise which reduces the ability to extract information from

the data. Specialized techniques are required to deal with such imagery, which has been modeled by theG0

distribution and under which regions with different degrees of roughness and mean brightness can be characterized

by two parameters; a third parameter, the number of looks, isrelated to the overall signal-to-noise ratio. Assessing

distances between samples is an important step in image analysis; they provide grounds of the separability and,

therefore, of the performance of classification procedures. This work derives and compares eight stochastic

distances and assesses the performance of hypothesis teststhat employ them and maximum likelihood estimation.

We conclude that tests based on the triangular distance havethe the closest empirical size to the theoretical one,

while those based on the arithmetic-geometric distances have the best power. Since the power of tests based on

the triangular distance is close to optimum, we conclude that the safest choice is using this distance for hypothesis

testing, even when compared with classical distances as Kullback-Leibler and Battacharyya.

Keywords: information theory, SAR imagery, contrast measures teoriada informação, imagens SAR,

medidas de contraste.
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1. Introduction
The operation of Synthetic Aperture Radar (SAR) consists of sending electromagnetic

pulses towards a target and analyzing the returning echo, whose intensity depends on the
physical properties of the target surface (OLIVER; QUEGAN, 1998).

Noise is inherent to image acquisition. An important sourceof noise when coherent
illumination is used is due to the interference of the signalbackscattering by the elements of the
target surface. The resulting effect is called speckle noise (OLIVER; QUEGAN, 1998).

Modelling the probability distribution of image regions can be a venue for image
analysis (CONRADSEN et al., 2003). In particular, the widely employed multiplicativemodel
leads to the suggestion of theG0 distribution for data obtained from coherent illumination
systems (FRERY et al., 1997;MEJAIL et al., 2001).

A direct statistical approach leads to the use of estimated parameters for data analysis, but
a single scalar measure would be more useful when dealing with images. Such measure can be
refereed to as “contrast”. Suitable measures of contrast not only provide useful information
about the image scene but also take part of pre-processing steps in several image analysis
procedures as, for instance, image indexing (SCHOU et al., 2003).

Recent years have seen an increasing interest in adapting information-theoretic tools to
image processing (GOUDAIL; RÉFRÉGIER, 2004). In particular, the concept of stochastic
divergence (LIESE; VAJDA, 2006) has found applications in, among other areas, cluster
analysis (MAK; BARNARD , 1996) and image classification (PUIG; GARCIA, 2003).

The aim of this study is to advance the analysis of contrast identification in single channel
speckled data. To accomplish this goal, measures of contrast for G0 distributed data are
proposed and assessed for intensity format. These measuresare based on information theoretic
divergences, and we identify the one that best separates different types of targets.

2. The G0 distribution for speckled data
Unlike many classes of noise found in optical imaging, speckle noise is neither Gaussian

nor additive (OLIVER; QUEGAN, 1998). Proposed in the context of optical statistics, the most
successful approach for speckle data analysis is the multiplicative model, which emerges from
the physics of the image formation (GOODMAN, 1985).

Such model assumes that each picture element is the outcome of a random variableZ called
return, which is the product of two independent random variables,X andY . While the random
variableX models the terrainbackscatter, the random variableY models thespeckle noise.

Backscatter carries all the relevant information from the mapped area; it depends on
target physical properties as, for instance, moisture and relief. A suitable distribution for the
backscatter is thereciprocal gamma law (FRERY et al., 1997),X ∼ Γ−1(α, γ), whose density
function is given by

fX(x;α, γ) =
γ−α

Γ(−α)
xα−1 exp

(
−γ
x

)
, −α, γ, x > 0. (1)

SpeckleY can be described by the gamma distribution,Y ∼ Γ(L,L), with density given by

fY (y;L) =
LL

Γ(L)
yL−1 exp (−Ly), y > 0, L ≥ 1, (2)

where the number of looksL is assumed known and constant over the whole image (ULABY;

MOORE; FUNG, 1986).
Considering the distributions characterized by densities (1) and (2), and that the related
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random variables are independent, the distribution associated toZ = XY is given by

fZ(z;α, γ, L) =
LLΓ(L− α)

γαΓ(−α)Γ(L)
zL−1 (γ + Lz)α−L , −α, γ, z > 0, L ≥ 1. (3)

We indicate this situation asZ ∼ G0(α, γ, L). Therth moment ofZ is expressed by

E[Zr] =
( γ
L

)r Γ(−α− r)

Γ(−α)

Γ(L+ r)

Γ(L)
, (4)

if −r/2 > α and infinite otherwise. The homogeneity of the region depends on the choice of
α, while γ controls the brightness.

Several methods for estimating parametersα and γ are available, including bias-
reduced procedures (CRIBARI-NETO; FRERY; SILVA, 2002;SILVA; CRIBARI-NETO; FRERY, 2008;
VASCONCELLOS; FRERY; SILVA, 2005), robust techniques (ALLENDE et al., 2006;BUSTOS; LUCINI;

FRERY, 2002) and algorithms for small samples (FRERY; CRIBARI-NETO; SOUZA, 2004). In
this study, because of its optimal asymptotic properties (CASELLA; BERGER, 2001), maximum
likelihood estimation is employed to estimateα andγ.

Based on a random sample of sizen, z = (z1, z2, . . . , zn), the likelihood function related to
theG0(α, γ, L) distribution is given by

L(α, γ; z) =

(
LLΓ(L− α)

γαΓ(−α)Γ(L)

)n n∏

i=1

zL−1
i (γ + Lzi)

α−L.

Thus, the maximum likelihood estimators for(α, γ), namely(α̂, γ̂), are the solution of the
following system of non-linear equations:

{
nψ0(L− α̂) − nψ0(−α̂) − n log(γ̂) +

∑n

i=1 log (γ̂ + Lzi) = 0,
−nα̂

γ̂
+ (α̂− L)

∑n

i=1(γ̂ + Lzi)
−1 = 0,

whereψ0(·) is the digamma function. However, the above system of equations does not, in
general, possess a closed form solution, and numerical optimization methods are considered.

3. Measures of Distance and Contrast for the G0 Law
Contrast analysis often addresses the problem of quantifying how distinguishable two image

regions are from each other. In a sense, the need of a distanceis implied. It is possible to
understand an image as a set of regions that can be described by different probability laws.

Divergence measures were submitted to a systematic and comprehensive treatment in Ali
e Silvey (1996), Csiszar (1967) and Salicrú et al. (1994) and,as a result, the class of(h, φ)-
divergences was proposed.

Let X and Y be random variables defined over the same probability space,equipped
with densitiesfX(x; θ1) andfY (x; θ2), respectively, whereθ1 andθ2 are parameter vectors.
Assuming that both densities share a common supportI ⊂ R the (h, φ)-divergence, between
fX andfY is defined by

Dh
φ(X,Y ) = h

(∫

I

φ

(
fX(x; θ1)

fY (x; θ2)

)
fY (x; θ2)dx

)
, (5)

whereφ : (0,∞) → [0,∞) is a convex function,h : (0,∞) → [0,∞) is a strictly increasing
function with h(0) = 0, and indeterminate forms are assigned value zero. As presented in
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Table 1, judicious choices ofh andφ lead to some well-known divergence measures.

Table 1: (h, φ)-divergences and related functionsφ andh.

(h, φ)-divergence h(y) φ(x)

Kullback-Leibler y/2 (x− 1) log(x)

Rényi (orderβ) 1
β−1

log ((β − 1)y + 1) , 0 ≤ y < 1
1−β

x1−β+xβ
−β(x−1)−2

2(β−1)
, 0 < β < 1

Hellinger y/2, 0 ≤ y < 2 (
√
x− 1)2

Bhattacharyya − log(−y + 1), 0 ≤ y < 1 −√
x+ x+1

2

Jensen-Shannon y/2 x log
(

2x
x+1

)
+ log

(
2

x+1

)

Arithmetic-geometric y
(

x+1
2

)
log

(
x+1
2x

)
+

(
x−1

2

)

Triangular y, 0 ≤ y < 2 (x−1)2

x+1

Harmonic-mean − log (−y/2 + 1) , 0 ≤ y < 2 (x−1)2

x+1

Some divergence measures lack the symmetry property required to distances, and a simple
solution to have distances is to define a new measuredh

φ(X,Y ) = (Dh
φ(X,Y ) +Dh

φ(Y,X))/2,
regardless whetherDh

φ(·, ·) is symmetric or not.
When considering the distance between same distributions, only their parameters are

relevant. In this case, parameter vectorsθ1 andθ2 replace random variables symbolsX and
Y as the arguments of divergence and distance measures. Nascimento (2008) provides explicit
expressions and numerical considerations regarding thesedistances for theG0 distribution.

Figure 1 depicts plots for the distancesdh
φ(θ1,θ2) betweenG0, whereθ1 = (α1, γ1, 8) and

θ2 = (−12, 11, 8), with α1 ∈ [−14,−10] andγ1 was selected, using equation (4), so that its
associatedG0 distributed random variable has unit mean:

γ1 =
LΓ(−α1)Γ(L)

Γ(−α1 − 1)Γ(L+ 1)
= −α1 − 1. (6)

The obtained curves indicate that Hellinger and Bhattacharyya distances exhibit comparable
behavior. Similarly, Kullback-Leibler, Rényi withβ = 0.95, and triangular distances have
closely matching plots.

Statistical hypothesis tests for the null hypothesisH0 : θ1 = θ2 can be derived from
distances. In particular, the following statistic is considered:

Sh
φ(θ̂1, θ̂2) =

2mnv

m+ n
dh

φ(θ̂1, θ̂2),

wherev = 1/ (h′(0)φ′′(1)) is a constant that depends on the chosen distance; see Table 2.

Proposition 1 (NASCIMENTO, 2008) Let m and n assume large values and Sh
φ(θ̂1, θ̂2) = s,

then the null hypothesis θ1 = θ2 can be rejected at a level α if Pr (χ2
M > s) ≤ α.

In terms of image analysis, this proposition offers a methodto statistically refute the
hypothesis that two samples obtained in different regions can be described by the same
distribution.

4. Simulation Experiments
In order to assess the proposed contrast measures, a collection of G0 distributed images was

generated and submitted to the statistical analysis suggested by Proposition 1. Two nominal
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Figure 1: Distance measures between twoG0 distributed random variables as a function ofα1.

Table 2: Distances and constantsv.
Distance v

Kullback-Leibler 1
Rényi (orderβ) 1/β

Hellinger 4
Bhattacharyya 4

Jensen-Shannon 4
Arithmetic-geometric 4

Triangular 1
Harmonic-mean 2

levels of significance were considered, namely1% and5%. We chose to worked with windows
of size7 × 7 pixels.

Following standard SAR literature, we index theG0 distribution byα and the meanµ =
−γ/(1 + α).

The empirical size and power of the proposed test were soughtas a means to guide the
identification of the most adequate distance measure, by means of Monte Carlo experiments
under four different scenarios for(α1, µ1, L) and (α2, µ2, L) andL ∈ {1, 2, 4, 8}: (i) α1 =
α2, µ1 6= µ2, (ii) α1 6= α2, µ1 = µ2, (iii) α1 < α2, µ1 < µ2, and (iv)α1 < α2, µ1 > µ2. For the
given selection of parameter values, pairwise combinations of the 64 image types furnished 96
different cases for each scenario (i) or (ii). Situations (iii) and (iv) offered 144 cases each.

Table 3 presents the null rejection rates of tests whose statisticsSh
φ are based on the discussed

stochastic distances: Kullback-Leibler (SKL ), Rényi of orderβ = 0.95 (SR), Hellinger (SH),
Bhattacharyya (SB), Jensen-Shannon (SJS), arithmetic-geometric (SAG), triangular (ST), and
harmonic-mean (SHM). Data was simulated obeying the null hypothesisH0 : (α1, γ1) =
(α2, γ2) = (α∗, γ∗). Five-thousand replications were performed in each situation, but due to
convergence issues in some cases lesser observations were used. The empirical rejection rates
closest to the nominal level are highlighted in boldface type, and the excellent performance of
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the test based on the triangular distance (ST) is evident; in the few cases where it is not the best
test, it is close to the optimum value.

The changes in the value ofγ∗ for a specificL do not alter significantly the rate of type I
error. For smaller values ofα∗ (homogeneous images), the empirical sizes are reduced, as
well as for smaller values ofL. The triangular distance presents the optimum performance
regarding test size. The tests yielded the empirical size closest to the theoretical one as follows:
triangular in 62.50% of the 64 situations, Jensen-Shannon and harmonic-mean 9.38%, Helinger
and Bhattacharyya 4.68%, Kullback-Leibler and Rényi 3.13% and, finally, arithmetic-geometric
1.57%. It is noteworthy that the two most commonly employed distances, namely the Kullbak-
Leibler and the Bhattacharyya distances present poor performance when used as test statistics.

Nascimento (2008) also assesses the test power, i.e., rejection rates over several alternative
hypotheses. Regarding this criterion, the test based on the triangular distance is consistently the
second best, after the one derived from the arithmetic-geometric distance, but the former is still
close to the theoretical value.

5. Conclusions
This paper presented eight statistical tests based on stochastic distances for contrast

identification through the variation of parametersα and γ in SAR images modelled by the
G0 distribution. The employed methodology differs from previous approaches, since it relies on
the symmetrization of the(h, φ)-divergence obtained under theG0 model for intensity data.

We presented evidence suggesting that the measuresST, SB, SR, SH andSJS have empirical
type I errors smaller than the one based on the Kullback-Leibler distance,SKL, which deserves
lots of attention due to its linking with the log-likelihoodfunction (BLATT; HERO, 2007).
Regarding the power of the associated tests, theSAG measure presented the best performance.

We observed that for a given number of looks, the test power performance of the proposed
measures was roughly the same, suggesting the test based on the triangular contrast measure as
the best tool for heterogeneity identification.

TheG0 distribution is quite appropriate for describing situations of extreme roughness, i.e.,
with values ofα close to zero. In this situation, despite the variability, the tests were also
efficient. Furthermore, the power, in general, improves with the increase in the number of looks;
that is, the measures of contrast perform better in images with better signal-to-noise ratio.
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140 1 1.63 1.29 0.82 1.29 1.16 1.09 1.84 1.56 4.08 3.47 2.79 3.60 3.26 2.99 4.83 3.87
2 1.47 1.17 0.91 1.29 1.12 1.04 2.16 1.47 4.45 3.93 3.24 4.01 3.71 3.54 5.22 4.40
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