Geological mapping and Geohazard monitoring from SAR

Vern Singhroy
Canada Centre for Remote Sensing

vern.singhroy@ccrs.nrcan.gc.ca

Outline

- Current SAR Systems
- Review of Current Geological Applications

Hydrocarbons: Exploration and Distribution
Mineral Exploration/ Mapping
Geological Hazard Monitoring

Future trends and Research Gaps:

SAR System Summary

	Design Life	lmaging frequency	Spatial resolution	Polarization	Look direction	Status
RADARSAT-2	7 years	C-Band, 5.405 GHz	3 to 100 meters	Single (HH, VV, VH, HV)	Left- and right-looking	Launch 2007
				Dual (HH/ HV, VV/VH)		
				Polarimetric		
RADARSAT-1	5 years	C-Band, 5.3 GHz	10 to 100 m	Single HH	Right-looking	In operation (Since 95)
Envisat ASAR	5 years	C-Band, 5.331 GHz	30 to 1000 meters	Single (HH, VV)	Right-looking	In operation (Since 02)
				Alternating (VV/HH, VV/VH, HH/HV)		
TerraSAR-X	5 years	X-Band, 9.650 GHz	1 to 15 meters	Single (HH, VV)	Left- and right-looking	Launch 2007
				Dual (VV/HH, VV/VH, HH/HV)		
ALOS PALSAR	5 years	L-Band, 1.27 GHz	10 to 100 meters	Single (HH, VV)	Right-looking	Launch 2006
				Dual (HH/ HV, VV/VH) Polarimetric (exp.)		

RADARSAT-2 Viewing Geometry

RADARSAT-2 will offer all the modes currently available with RADARSAT-1 PLUS

- → Selective Polarization (HH, VV, HV, VH) on all acquisition modes
- → Two full polarimetric modes (Standard QP and Fine QP)
- → Right or Left-looking modes available at all time
- → Triple Fine mode: 50 km swath, 11 x 9 m nominal resol.
- → Ultra Fine Wide mode: 20 km swath, 3 x 3 m resol.
- → Ultra Fine Narrow mode: 10 km swath, 3 x 3 m resol.

RADARSAT-C Concept Overview

Constellation of six satellites 16 min apart

50 min coverage of east Atlantic

Canadian Space Agence spatiale Agency canadienne

- Three to six satellites
- Minimum daily coverage of Canada at 50m
- Minimum daily global access
- Data analyzed in near real time
- Following satellites will tasked for specific identification
- Satellites equally spaced in same plane
- 2 to 4-day Coherent Change Detection using SAR interferometry
- Dual polarization data capability (constellation, but not necessarily each satellite)
- Gradual implementation with yearly launch
- Gradual replacement of aging satellites
- Fully reconfigurable

Timeline

Mission Requirements (3)

Spatial Resolution

- Medium Resolution Mode (50m, 4 looks)
- Low Resolution Mode (100 m, 8 looks)
- High-Resolution Mode (5 m, 1 look)
- Very High-Resolution Mode (< 3 m)
- Dedicated Modes

Swath

- 350 km in medium resolution
- 500 km low-resolution
- 20-30 km in high-resolution
- TBD km for CCD.

Hydrocarbon Exploration

Halfway River: Alberta

RUDP Image Courtesy of CSA (copyright 1996)

Ship detection and Oil Pollution Tracking

Ressources naturelles Canada

Geomatics Canada

Géomatique Canada

RADARSAT-1

Detection of Oil Seeps in the Gulf of Mexico

Canadian Space Agency, 1996 Agence spatiale canadienne, 1996

Image provided by RADARSAT International

Sudbury Basin

- World's oldest, largest, and best-exposed meteorite impact site
 - 1.8 billion years old
 - 200-300 km original diameter
- World class mineral deposits
 - over 100 years of production worth more than \$140 billion (contained metal in 2006 dollars)
 - Current production worth close to \$2.5 billion per year
 - Significant new discoveries continue to be made
- Large mining cluster
- The Basin is a CCRS supersite to develop a number of Geological Remote Sensing techniques.- evaluation of RADARSAT-1&2, and Hyperspectral (CSA) Envisat (ESA) and ALOS (JAXA) Terra SAR (DLR) missions.
- CCRS is providing high-res fused images to assist the GSC that are conducting high res mapping in the Basin (1:10-50K)

Sudbury Structure Studies

- GSC Compilations
- Included structural analysis of the 2D seismic, mag. and gravity data leading to currently accepted model of the deep basin geometry.

TYPICAL CROSS SECTION THROUGH NORTH RANGE ORE BODY

Integration of SAR and Magnetic Data

RADARSAT Standard Mode and low resolution magnetic data

Sudbury High Resolution Image Integration

RADARSAT-1 Fine Mode integrated with magnetic vertical gradient and shaded relief

SAR and geochemistry IHS Integration

Updated geologic map

Sudbury Breccia(25)- and Norite (8a)

Area 25: p39 Line 3 Pass 2 30-MAR-2004

Linear Pol (dB): σ_{HH}^{0} = -11.54 ; σ_{HV}^{0} =-22.57 ; σ_{VV}^{0} =-9.55 Circular Pol (dB): σ_{RR}^{0} = -14.40 ; σ_{LR}^{0} =-12.21 ; σ_{LL}^{0} =-14.52

Area 9: p8a Line 3 Pass 2 30-MAR-2004

Linear Pol (dB): $\sigma_{HH}^0 = -14.57$; $\sigma_{HV}^0 = -26.68$; $\sigma_{VV}^0 = -11.45$ Circular Pol (dB): $\sigma_{RR}^0 = -17.43$; $\sigma_{LR}^0 = -14.10$; $\sigma_{LL}^0 = -18.25$

Max Co-Pol: $(\psi = 90^{\circ}; \chi = 0^{\circ})$ Min Co-Pol: $(\psi = 153^{\circ}; \chi = 36^{\circ})$ Pedestal Height Co-Pol: 0.28

Incident angle: 44.39° Area center: [326 26151] Number of samples: 17274 Max Cross-Pol: (ψ = 135 $^{\circ}$; χ = 38 $^{\circ}$) Min Cross-Pol: (ψ = 0 $^{\circ}$; χ = 0 $^{\circ}$) Pedestal Height Cross-Pol: 0.09

Max Co-Pol: $(\psi = 88^{\circ}; \chi = -1^{\circ})$ Min Co-Pol: $(\psi = 153^{\circ}; \chi = 36^{\circ})$ Pedestal Height Co-Pol: 0.16

Incident angle: 45.72° Area center: [378 13776] Number of samples: 383 Max Cross-Pol: ($\psi = 128^{\circ}$; $\chi = 38^{\circ}$) Min Cross-Pol: ($\psi = 89^{\circ}$; $\chi = -1^{\circ}$) Pedestal Height Cross-Pol: 0.05

Polarimetric composite provide additional structural details (Singhroy 2005-CCRS)

Crater-fill hydrothermal alteration: Sudbury structure (Ames06)

BATHURST ISLAND POLAR BEAR PASS

Lithology from SAR

RADARSAT-1 C-HH

Standard beam (S7) 21-March-96 θ = 45° - 49°

Res.: 20 m (rg) x 27 m (az)

Pixel spacing: 32 m

10 km

look direction

Polarimetric Signatures of Surficial Materials

Slope Stability and Deformations

Results: Permafrost activity (red) Deformation maps on ASC mode: 3 ~consecutive pairs

3D view – Permafrost activity (red)

View from Interpretive Centre

Multi-interferogram Approach: Frank Slide Alberta: Trans Canada Highway:

InSAR images are used as part of the integrated monitoring program.

Deformation values are only shown where scene coherence exceeds 0.5 (ERS, ENVISAT) or 0.3 (RSAT) respectively.

CTM-InSAR Vancouver Island

Very seismic active region (subduction, strike-slip faults)

The Leech River Fault is a deep rooted thrust fault possibly

- Deformation rate ~3±1mm/yr in slant
- By triangulation => Vert.= 2.8±0.9mm/yr

=> Horiz.=1.1±0.4mm/yr

InSAR Examples (Feretti 06)

Subsidence Montoring

Tectonics

Slow Landslides Montoring

Single Building Monitoring

Future SAR Research for Geological Applications

InSAR

Non linear motion components especially on complex landslides

Phase unwrapping problems related fast motion and accurate DEM

Field Corner reflector insatallation in remote areas: One size does not fit all.

No satellite today dedicated to InSAR . New SAR systems will reduce the current difficulties and limitations.

Need a multi-interferogram approach —a multi-image strategy can overcome most of the difficulties encountered in InSAR analysis. (i) atmospheric effects, (ii) baseline indetermination, (iii) identification of coherent areas

A time series of data is better than a single value: (i) for geohazard monitoring; (ii) more reliable and higher accuracy data

Geological Mapping

Need for *polarimetric signatures of geological materials/rocks* from single, dual pol and quad pol images Need to evaluate C X L for geological mapping with availability of RADARSAT, Envisat, Terra SAR and ALOS

Need to develop textural classifiers for geological surfaces.