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Introduction

The rainforests of the Amazon basin form the
largest contiguous, intact tropical forest on
Earth, a vast storehouse of carbon that could
influence the trajectory of global climate
change.

Tropical forest ecosystems also have social,
cultural and economic significance as sources
of important renewable and non-renewable
resources.

® The functional behavior of tropical forest
ecosystems are not well understood,

® Present-day metabolism and carbon balance of
Amazonia remains poorly characterized due to
complex environmental controls (moisture,
sunlight) and associated biologic responses.




Knowledge of the
temporal dynamics
and spatial
heterogeneities of
tropical forest
ecosystems at
multiple scales is

hecessary to
understand
vegetation behavior
and in
understanding how
plants might adapt
to global change.




Phenology

® At the landscape level, many climate and growth models
characterize tropical evergreen rainforests as having no
seasonal variation in biophysical plant properties such as
greenness, leaf area index, FAPAR, and albedo

Coarse resolution, multi-temporal satellite measurements, such as
the NOAA-AVHRR time series data, are widely used for large
scale vegetation monitoring and vegetation -climate studies,
however, such data have also treated the phenology of tropical
evergreen forests as flat or seasonally constant.

Finer resolution satellite data (e.g. Landsat) of fer more accurate
monitoring and discrimination of tropical forests and disturbance
events, such as deforestation and fire. However, it is difficult to
obtain cloud-free images at the frequencies needed to define
accurate phenology trends.




Uncertainties

® Satellites can provide consistent measures of vegetation activity
. with spatial- and temporal- detail at the global scale, which can be
linked to ecosystem health, productivity and carbon fluxes,

There remains large uncertainties in estimating GPP at the canopy
level associated with

® Seasonal dynamics

® Spatial variation due to climate, soils, and land use (disturbance,
management,... )

Uncertainties associated with coarse scale meteorology, remote
sensing variables (LAI, FPAR, VI), and canopy biophysical
attributes (land cover type, biome-specific, disturbance history)

Heinsch et al., 2006



4@ Objectives

h

Assess spatial and temporal variability in vegetation
activity in fropical forest ecosystems
Assess the influences of light, moisture, and human

activity in tropical forests
Changes in phenological metrics depict a canopies’
integrated response to environmental change,

Test for phenologic consistencies of satellite data
with flux fower data in highly impacted/
disturbed tropical forests in Asia




Mechanisms controlling phenology

"‘ However, plot-level & flux fower local-scale

. studies have observed consistent seasonal
changes in tropical forest canopy characteristics,
including synchronized flushing and exchange of
new leaves, periods of decreased foliage density,
leaf aging, senescence, and litterfall in response
to common environmental factors, such as
rainfall, temperature, and photoperiod (Wright
and Schaik, 1994; Reich et al., 2004; Saleska et
al., 2005)

Leaf flushing with
sunlight at Tapajos,

& Leaf and flower production in many rainforests,

5 including central Amazonia have been
reported to closely coincide with dry season July 2002 (photo by
peaks in incident photosynthetic active Tomoaki Miura)
radiation (PAR) [Wright & van Schaik 1994].
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Phenologic-optical Changes in
Tropical Forests
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TERRA
Dec. 18, 1999

" Recent satellite observations are

. providing hew opportunities to map S
. and better understand spatial '

. patterns of landscape phenology

- and productivity as a function of

. environmental controls and land

use activities. Terra- MODIS data

g\/\/e investigated the phenology of Amazon ecosystems across over a
range of climate (precipitation, light) and land use conditions

encompassing open and dense moist rainforests, seasonally dry
forests, ecotone forests, regenerating forests, and converted
pasture/ agriculture with satellite observations from fine resolution
EO-1 Hyperion and moderate resolution MODIS




§Terra- MODIS Vegetation Index
i Product (MOD13Q1, A2)

Enhanced Vegetation Index

L -
3 F g
Image courtesy of the NASA Terra Project

0 o =0 The dervation of thematic data from Earth observing satelltes,
lOm'r i Cl X pred = C2 X pblue + L

red

. - Based on Ist-order Beer’s law application of
radiative transfer in canopy

: - Extends sensitivity in high biomass canopies and
. removes soil optical influences

soil water

Travis Huxman




Conversion of VI to FPAR?

e Most common method to derive FPAR is through
. NDVI relationships

e Only PAR absorbed by chlorophyll is responsible
. for photosynthesis:

o FPAR _ FPAR ;;+ FPAR\py

canopy =

canopy

help define to what degree the PEM models are
consistent with light absorption process of
photosynthesis at the chlorophyll level.

- Comparisons of FPAR ,;, and FPAR would




FPAR

FPAR and FPAR.,,

canopy’ leaf’

deciduous broadleaf forest (Harvard Forest)

FPAR canopy in 2001
FPAR canopy in 2002
FPARcanopy in 2003
FPAR]eafin 2001
FPAR]eaf in 2002
FPARJeaf in 2003
FPARch] in 2001
FPARch] in 2002
FPARch] in 2003

L 4 K Xoamfex: 4K

T T
180 200

Day Of Year (DOY) Xiao et al. 2005, 2005

FPAR,_ = f(NDVI)
FPAR,,, = f(EVI)

Zihang et al.,2005, using a radiative transfer model (PROSAIL2) & daily MODIS data



Site Results
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MODIS shows

~ tropical

. rainforests as

;having significant

. seasonal
variation in
vegetation
dynamics.
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éCoupling of satellite data with in-situ

networks (eddy-covariance flux Towers)
p—

' “Integration of in situ, airborne and space-based : '%'
: observations within the various societal benefit ,a?'
¥
i
|
7
i

: areas will be encouraged, as will the establishment
: of global, efficient, and representative networks of

: in situ observation to support process studies,
: satellite data validation....,” (GEOSS)

Continuous measurements of flux (CO,, H,O,

i heat and momentum) data are powerfully

: suited for vegetation dynamics and for

. deriving relationships between carbon fluxes
i and key driving variables.

Can test model/remote-sensing estimates of
: carbon-exchange and seasonality.
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Rainforest GPP & EVI Local tower flux

measurements of gross

. with modeled GPP (IBIS) primary productivity (GPP)

: and regional satellite
observations from the

3500 MODIS show seasonal

3000 patterns in canopy

photosynthesis, or GPP that

follow the availability of

sunlight, contradicting many

1500 ecosystem models that show
dry season declines in

11000 photosynthesis due to water

500 limitations.

Dry Season
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A consistency between
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This raises a question about
model predictions

* The same model constructs affect both short-term (seasonal)

and long-term variations of C and water exchange,

but the performance of models at short time-scales (where
they can now be tested with data) 1s problematic, hence
affecting confidence 1n reliability of their long-term
predictions?




Basin-wide greening in dry season
October EVI (dry season) minus June EVI (wet season)
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. This offers new approaches to constrain rooting depth in

- terrestrial ecosystem models over the Amazon using MODIS

. EVI satellite data and Biome-BGC terrestrial ecosystem
model.
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Satellite-based Vegetation Photosynthesis Model
% (VPM)

Climate data

CO, eddy Surface reflectance (MODIS)
flux tower

Validation LéWI EVI

Literature |

GPP = (80 X wIscalar X Wscalar X Pscalar) X Fli‘AI{chl >
PAR

Input data for simulation of the VPM model

Air temperature, PAR, Vegetation indices (EVI, LSWI), Maximum light
: use efficiency (g,)

Xiao et al. 2004,2006,2006



Extrapolating tower-derived GPP Carbon fluxes with
MODIS remote sensing: unmodified EVI vs. VPM model

GPP versus unmodified EVI GPP versus EVI-based VPM prediction

(Huete et al., 2006) (Xiao et al., 2005)
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Unmodified EVI works better than VPM in tropical forests
Saleska




Disturbance at Tapajos
EVIdry-wet (October - June)

Red colors depict where
'greenning’ occurs in the
dry season with ‘yellows’
indicating 'drying’
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Reflectance Difference
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Reflectance Differences (Jul-Aug-Sep)
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Primary Tropical Forests
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Dry season phenology profiles depicted by
NDVT and EVI
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Dry season phenology profiles depicted by
NDWTI and LSWI
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Consistency with Flux Tower Data

A0
Jarmu Tower

35 1
30 T

25

GPP (MgChhalyr)

20 +©

15 —t f
T AT e e et
,ﬁ;;; %, ﬁﬂa N ﬁgﬁ:ﬁg@f S
35 A
30 -+ Ji Parana FPasture
25 -+
20 -+
15
10

[

-
o
-
L
(=
=
('
('
Ll




Conclusions

Satellite phenological observations and tower flux measurements
represent important site-specific and community-level responses
to environmental variation and change.

The Hyperion data provided information of land cover
characteristics that helped explain the coarser temporal patterns
observed with MODIS.

We found gradients of moisture and light controls across the
ecotone as well as distinct phenology shifts associated with
disturbance and land use history.

Flux tower measurements were consistent with the satellite data
providing opportunities for aggregation and scaling of the in-situ
with satellite measurements.




Conclusions

* At regional scales, a complex mosaic of vegetation
function and phenology was found as a result of
forest structural variations; soil properties, land use
activities, conversion and human interactions;
variations in climate; and associated ecological
conditions.

Both climatic and human drivers may alter the
balance of moisture and sunlight controls on tropical

forest phenology and productivity.
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Harvard Forest
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be a near-linear indicator of APAR
and a near-linear indicator of P,
and 1/r. under stress-free condi-
tions,

Sellers 1987,1992



Conclusions

® Qur results indicate the Amazon behaves distinctly
different from several common models and intuition
about it suggests,

o We found extensive basin-wide flushes of new leaf
growth in the sunny dry season, suggesting that
sunlight may exert more influence than rainfall on
rainforest phenology and productivity,

o This pattern is opposite that encountered for
pastures and disturbed forests which are greenner
during the wet season and become moisture
stressed in the dry season due to their shallower
rooting depths.




o The transitional/ drier, southern Amazon forests had
weaker or no ‘greenning’ signal in the dry season
and may directly have lower photosynthetic

capacity due fo reduced water availability,

o Both climatic and human drivers, as well as ecological
conditions (soils, fopography, nutrients) may alter
the balance of moisture, sunlight, and biologic

controls on rainforest phenology and productivity,

o Enhanced dry season greenning disappeared in disturbed & drier
areas which may also be the case for Amazon rainforests
during drier El Nino events




